

Module Catalogue

Master Program Materials Science (PO 2016)

Faculty of Mathematics, Natural Sciences, and Materials Engineering

Examination regulations as of 11.05.2016

You can see the other use cases of the modules in Digicampus.

Important additional information due to the corona pandemic:

Please note that due to the ongoing development of the coronavirus pandemic, the details relating to the format of examinations for each module within the module catalogue may not be up to date. The examination formats for each module will be clarified and determined during the course of the semester.

Index by Module Groups

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht) *	8
PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht) *	

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht) *	. 12
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)	14

3) 2 Methods in Materials Science

PHM-0287: Method Course: Spectroscopy of Organic Semiconductors (8 ECTS/LP, Wahlpflicht)	16
PHM-0297: Method Course: Methods in Bioanalytics (8 ECTS/LP, Wahlpflicht) *	18
PHM-0298: Method course: From macroscopic to microscopic ferroic properties (8 ECTS/LP, Wahlpflicht) *	20
PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht)	22
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)	24
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *	26
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht)	28
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)	30
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)	32
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)	34
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)	36
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht)	38
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht)	40
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht)	,
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)	44
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)	46
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)	48

PHM-0258: Method course: Charge doping effects in semiconductors (8 ECTS/LP, Wahlpflicht)51
PHM-0285: Method Course: Computational Biophysics (8 ECTS/LP, Wahlpflicht)53

4) 3a Conducting and Presenting Scientific Work - Seminar

PHM-0158: Introduction to Materials (= Seminar)	(4 ECTS/LP, Pflicht) *
---	------------------------

5) 3b Conducting and Presenting Scientific Work - Laboratory Project

PHM-0159: Laboratory Project (10 ECTS/LP, F	Pflicht)56
---	------------

6) 4 Materials Science - Major Topic

a) Physics of Materials

PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)	57
PHM-0058: Organic Semiconductors (6 ECTS/LP)	59
PHM-0060: Low Temperature Physics (6 ECTS/LP)	61
PHM-0066: Superconductivity (6 ECTS/LP) *	63
PHM-0252: Optical Excitations in Materials (6 ECTS/LP, Wahlpflicht) *	65
PHM-0253: Dielectric Materials (6 ECTS/LP, Wahlpflicht)	67
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)	69
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)	71
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)	73
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	75
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht) *	77

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)	.79
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)	.81
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	.83
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *	.85
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht) *	87
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *	89
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	.90
PHM-0264: Functional and Smart Macromolecular Materials (6 ECTS/LP, Wahlpflicht) *	92

c) Engineering of Materials

MRM-0126: Ceramic Matrix Composites (6 ECTS/LP) *	94
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)	96
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht) *	98
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)	100
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht) *	102
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	104
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)	106
MRM-0136: Mechanical Characterization of Materials (6 ECTS/LP, Wahlpflicht)	108
MRM-0112: Finite element modeling of multiphysics phenomena (6 ECTS/LP, Wahlpflicht)	110

7) 5 Materials Science Elective Topic (PO16)

MRM-0126: Ceramic Matrix Composites (6 ECTS/LP, Wahlpflicht) * 112
MRM-0142: Complex 3D Structures and Components from 2D Materials (6 ECTS/LP, Wahlpflicht)
PHM-0252: Optical Excitations in Materials (6 ECTS/LP, Wahlpflicht) *116
PHM-0253: Dielectric Materials (6 ECTS/LP, Wahlpflicht)118
PHM-0297: Method Course: Methods in Bioanalytics (8 ECTS/LP, Wahlpflicht) *120
PHM-0298: Method course: From macroscopic to microscopic ferroic properties (8 ECTS/LP, Wahlpflicht) *
PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)124
PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)126
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht)
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht) *130
PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht)132
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht) *
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)136
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)138
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht)140
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)142

PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht)
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)146
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)148
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) 150
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)152
PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)154
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)156
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)158
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *160
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)161
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)163
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht) *
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)167
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht) 168
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)170
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht) *
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht) * 176
PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht) *
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)180
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)186
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)190
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht) 192
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) 196

PHM-0171: Method Course: Coordination Materials (8 ECTS/LP)	.198
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht)	. 200
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *	
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)	204
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)	. 206
PHM-0193: Plasma Material Interaction (6 ECTS/LP, Wahlpflicht) *	208
PHM-0234: 2D Materials (6 ECTS/LP, Wahlpflicht)	. 210
PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)	.212
PHM-0225: Analog Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht) *	214
PHM-0226: Digital Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)	.216
PHM-0228: Symmetry concepts and their applications in solid state physics and materials science ECTS/LP, Wahlpflicht)	•
PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)	.219
PHM-0285: Method Course: Computational Biophysics (8 ECTS/LP, Wahlpflicht)	. 222
MRM-0128: Bioinspired Composites (6 ECTS/LP, Wahlpflicht)	224
MRM-0112: Finite element modeling of multiphysics phenomena (6 ECTS/LP, Wahlpflicht)	.226
MRM-0136: Mechanical Characterization of Materials (6 ECTS/LP, Wahlpflicht)	228
PHM-0264: Functional and Smart Macromolecular Materials (6 ECTS/LP, Wahlpflicht) *	230

8) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	232
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	233

9) 7 Functional Materials (International) – zweites Studienjahr Ausland

PHM-0208: Functional Materials (International) – second year (Institut National Polytechnique de Grenoble) (58 ECTS/LP)
PHM-0211: Functional Materials (International) – second year (Université Bordeaux I) (58 ECTS/ LP)235
PHM-0212: Functional Materials (International) – second year (Université Catholique de Louvain) (58 ECTS/LP)
PHM-0213: Functional Materials (International) – second year (Université de Liège) (58 ECTS/ LP)237
PHM-0214: Functional Materials (International) – second year (Universidade de Aveiro) (58 ECTS/ LP)238

10) 8 Functional Materials (International) – erstes Studienjahr Ausland

PHM-0209: Functional Materials (International) – first year (Institut National Polytechnique de
Grenoble) (62 ECTS/LP)

Module PHM-0144: Materials Ph Materials Physics	hysics	6 ECTS/LP
Version 1.1.0 (since WS15/16) Person responsible for module: apl. F	Prof. Dr. Helmut Karl	
Contents: • Electrons in solids • Phonons • Properties of metals, semicond • Application in optical, electronic • Dielectric solids, optical properties	c, and optoelectronic devices	
 structure, charge carrier statistic are capable to apply derived apply basic characteristics of semicor have the competence to apply of solids and to describe their free understand size effects on mate Integrated acquirement of soft statistics 	rms and concepts of solid state physics cs, phonons, doping and optical proper oproximations as the effective mass or t inductor materials, these concepts for the description of ele unctionalities,	he electron-hole concept to describe ectric, electro-optic and thermal properties
Remarks: compulsory module		
Workload: Total: 180 h 120 h studying of course content usir 60 h lecture and exercise course (atte	•••••••••••••••••••••••••••••••••••••••	
Conditions: basic knowledge of solid state physic	s	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Materials Phys Mode of Instruction: lecture Language: English Contact Hours: 3	ics	
Learning Outcome: see module description		

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Assigned Courses:

Materials Physics (lecture)

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Materials Physics (Tutorial) (exercise course)

Examination

Materials Physics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Physics

Module PHM-0110: Materials Ch Materials Chemistry	emistry	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. [
Contents:		
Revision of basic chemical conc	-	
Solid state chemical aspects of a	selected materials, such as	
• Thermoelectrics		
Battery electrode material		
 Hydrogen storage materia 	IS	
 Data storage materials Decembers and sigmants 		
Phosphors and pigmentsHeterogeneous catalysis		
 nanoscale materials 		
Learning Outcomes / Competences	:	
	concepts on materials science problems,	
	ructure-property relations of materials cor	ů ů
	es, chemical bonding in solids and chem	ical properties of selected compound
classes,		
	oaches towards relevant materials,	
acquire skills to perform illeratur	e research using online data bases.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	-	
20 h studying of course content using		
20 h studying of course content using		
80 h studying of course content throug	h exercises / case studies (self-study)	
Conditions:		
The lecture course is based on the Ba	chelor in Materials Science courses	
Chemie I and Chemie III (solid state cl	hemistry).	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Materials Chem	istry	
Mode of Instruction: lecture	-	
Language: English		
Contact Hours: 3		
Learning Outcome:		
see description of module		

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Assigned Courses:

Materials Chemistry (Tutorial) (exercise course)

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Chemistry

Module PHM-0117: Surfaces an Surfaces and Interfaces	d Interfaces	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.	Dr. Manfred Albrecht	
Contents: Introduction		
The importance of surfaces and	l interfaces	
Some basic facts from solid state phy	sics	
 Crystal lattice and reciprocal lat Electronic structure of solids Lattice dynamics 	tice	
Physics at surfaces and interfaces		
 Structure of ideal and real surfa Relaxation and reconstruction Transport (diffusion, electronic) Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid sta Interface dominated materials (on interfaces te surfaces (catalysis)	
Methods to study chemical composition	on and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scanning Auger – electron – spectroscopy Photo electron spectroscopy 		
Learning Outcomes / Competences The students:	s:	
surfaces and interfaces,acquire the skill to solve problem interface physics,	ms of fundamental research and applie certain problems autonomously based	
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throu 60 h lecture and exercise course (atte	provided materials (self-study) gh exercises / case studies (self-study))
Conditions: The module "Physics IV - Solid State Materials Science program should be		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module Part of the Module: Surfaces and Interfaces Mode of Instruction: lecture Language: English Frequency: annually Contact Hours: 3 Learning Outcome: see module description Contents: see module description Literature: • Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH) • Lüth: Surfaces and Interfaces of Solids (Springer) · Zangwill: Physics at Surfaces (Cambridge) • Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland) • Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner) • Briggs, Seah: Practical Surface Analysis I und II (Wiley) **Assigned Courses:** Surfaces and Interfaces (lecture) *(online/digital) * Part of the Module: Surfaces and Interfaces (Tutorial) Mode of Instruction: exercise course Language: English Frequency: annually Contact Hours: 1 Assigned Courses: Surfaces and Interfaces (Tutorial) (exercise course) *(online/digital) *

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

 Version 1.0.0 (since WS09/10) Person responsible for module: Prof. Dr. Wolfgang Scherer Contents: Basics of quantum chemical methods Molecular symmetry and group theory The electronical structure of transition metal complexes Learning Outcomes / Competences: The students: know the basics of the extended-Hückel-method and the density function. know the basics of group theory, are able to apply the knowledge gained through consideration of symmet spectroscopy, and are able to interpret and predict the basical geometric, electronical and metal and metal complexes 	try from vibration-, NMR-, and UV/VIS-
 Basics of quantum chemical methods Molecular symmetry and group theory The electronical structure of transition metal complexes Learning Outcomes / Competences: The students: know the basics of the extended-Hückel-method and the density function. know the basics of group theory, are able to apply the knowledge gained through consideration of symmet spectroscopy, and 	try from vibration-, NMR-, and UV/VIS-
 The students: know the basics of the extended-Hückel-method and the density function. know the basics of group theory, are able to apply the knowledge gained through consideration of symmet spectroscopy, and 	try from vibration-, NMR-, and UV/VIS-
 know the basics of the extended-Hückel-method and the density function. know the basics of group theory, are able to apply the knowledge gained through consideration of symmet spectroscopy, and 	try from vibration-, NMR-, and UV/VIS-
 know the basics of group theory, are able to apply the knowledge gained through consideration of symmet spectroscopy, and 	try from vibration-, NMR-, and UV/VIS-
complexes.Integrated acquirement of soft skills: ability to specialize in a scientific top for solving scientific problems.	אין איזע איז
Remarks: It is possible for students to do EHM calculations autonomously and analyze ele computer cluster within the scope of the tutorial.	ectronical structures of molecules on a
Workload: Total: 180 h 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)	
Conditions: It is recommended to complete the experiments FP11 (IR-spectroscopy) and FP17 (Raman-spectroscopy) of the module "Physikalisches Fortgeschrittenenpraktikum".	
Frequency: each winter semester notRecommended Semester:in winter term 22/23from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: Repeat Exams Permitted: 4 according to the examination regulations of the study program	
Parts of the Module	
Part of the Module: Chemical Physics I Mode of Instruction: lecture Language: English Contact Hours: 3	

see module description

Contents:

- Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Semiconductors	Course: Spectroscopy of Organic	8 ECTS/LF
OCHINCOLIULUU S	1 17 0	
Method Course: Spectroscopy of	Organic Semiconductors	
Version 1.0.0 (since SoSe22) Person responsible for module: P Dr. Alexander Hofmann	rof. Dr. Wolfgang Brütting	
 microscopy) Optical spectroscopy and p photoluminescence, orienta Charge transport (space-ch Light-emitting diodes (differ 	n of thin films (vapor deposition, spin coatin hotophysics (ellipsometry, transmission, ste tion anisotropy) arge limited current, field-effect mobility, do ent emitter types, device efficiency measur architectures, power and quantum efficiency	eady-state and time-resolved oping) ement and simulation)
Learning Outcomes / Competer	nces:	
 and have the competence t 	perties of the materials taking into account o comprehend and attend to current proble oft skills: practicing technical English, work	ms in the field of organic electronics.
Workload: Total: 240 h		
Conditions: Basic knowledge of atomic and so concepts of quantum physics.	blid state physics, as well as elementary	Credit Requirements: Bestehen der Modulprüfung
Basic knowledge of atomic and so concepts of quantum physics.	blid state physics, as well as elementary Recommended Semester: from 1.	-
Basic knowledge of atomic and so	Recommended Semester:	Bestehen der Modulprüfung Minimal Duration of the Module:
Basic knowledge of atomic and so concepts of quantum physics. Frequency: annually Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Bestehen der Modulprüfung Minimal Duration of the Module:

Language: English / German

Contact Hours: 2

Lehr-/Lernmethoden:

The basics for each topic will be tought in class, e.g. using black board and beamer presentation.

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)
- S.R. Forrest: Organic Electronics (Oxford Univ. Press)

Assigned Courses:

Method Course: Spectroscopy of Organic Semiconductors (internship)

Part of the Module: Method Course: Spectroscopy of Organic Semiconductors (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Lehr-/Lernmethoden:

After teaching in class, the students with go the lab to get practical experience with each topic.

Assigned Courses:

Method Course: Spectroscopy of Organic Semiconductors (internship)

Examination

Method Course: Spectroscopy of Organic Semiconductors

report

Module PHM-0297: Method Course Method Course: Methods in Bioanalytic	-	8 ECTS/LP
Version 1.0.0 (since WS22/23) Person responsible for module: Prof. D	r. Janina Bahnemann	
Contents:		
- Basic concepts of instrumental analyti	ics, sensor technology, validation, quality	y assurance
- Biological basics for sensor design an	d sample components	
- Biological markers, biomaterials and t	argets: bioreceptors: antibodies, enzyme	es, aptamers, cells, nanoparticles
- Sensor principles / transducers: optica	al, thermal, electrochemical, electromech	nanical, colorimetric
- Sensor materials (e.g., silicon, gold, p	lastics, polymers)	
- Immobilization of bioreceptors on sen	sor materials	
- Lateral flow assays, Point-of-Care dia	gnostics	
- Carbohydrate and lipid analysis: Chro	matographic methods (HPLC, GC, DC, I	MS)
- Amino acid analytics: HPLC, fluoresce	ence spectroscopy	
- Nucleic acid analytics: PCR method, s	sequencing, electrophoresis, microarrays	5
- Protein analytics: Chromatography, el	ectrophoresis, spectroscopy, Bradford a	ssay
- Cell analytics: Flow cytometry and mic	croscopy	
- Concepts and materials for sensor de	velopment and optimization:	
e.g., Microfluidics, additive manufa	acturing, nanoporous materials, nanopar	ticles, amplifiers
 Learning Outcomes / Competences: Students will be able to use acquire 	red analytical expertise to adequately de	scribe and correlate basic principles of
bioanalysis and their applications.		
• Students will be able to transfer ad practical course.	cquired knowledge from the lecture to pr	actical applications in the experimental
 Students will demonstrate self-cor small groups. 	npetence of work organization as well as	s social competence by working in
	eins using various analytical methods, to cally evaluate, comprehensibly record in	-
Remarks: ELECTIVE COMPULSORY MODULE		
Number of students will be limited to 9.		
Workload:		
Total: 240 h		
Conditions: keine / none		Credit Requirements: Practical work and written report
Frequency: nach Bedarf WS und	Recommended Semester:	Minimal Duration of the Module:
SoSe	1 4.	1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: none	

Parts of the Module
Part of the Module: Method Course: Methods in Bioanalytics
Language: German / English
Contact Hours: 2
Literature:
Lottspeich and Engels: "Bioanalytik", Spektrum Akademischer Verlag, ISBN: 3-8274-2942-0
 Lottspeich and Engels: "Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology"
Ozkan et al.: "Biosensors: Fundamentals, Emerging Technologies, and Application", CRC Press
• Yoon: "Introduction to Biosensors: From Electric Circuits to Immunosensors", Springer Verlag, ISBN: 978-3319801360
Thieman: "Introduction to Biotechnology", Pearson, ISBN: 978-1292261775
Assigned Courses:
Method Course: Methods in Bioanalytics
Part of the Module: Method Course: Methods in Bioanalytics (Pratical Course) Language: German / English Contact Hours: 4
Assigned Courses:
Method Course: Methods in Bioanalytics
Examination

Method Course: Methods in Bioanalytics

report, Practical work and written report on practical work

	se: From macroscopic to	8 ECTS/LP
microscopic ferroic properties		0 2013/21
Method course: From macroscopic to	microscopic ferroic properties	
Version 1.0.0 (since WS22/23)		
Person responsible for module: Prof. [Dr. István Kézsmárki	
Contents:		
ferromagnetism, which play a key role course will teach the students to under scale and, after having a fundamental	arn the basic concepts of ferroic properti- in materials science and engineering, at rstand and perform experiments on ferro understanding, microscopic measureme nning complex measurement procedures	t cryogenic temperatures. This method nic materials first, on a macroscopic ents. Therefore, the students will be
Magnetic Properties will be investigate	ed via:	
 Magnetization measurements Susceptibility measurements Magnetic force microscopy (MFI 	М)	
Electric Properties will be investigated	via:	
 Linear and non-linear dielectric s SEM / EDX Polarization measurements 		
Conductive atomic force microso	copy (cAFM) / piezo force microscopy (P	'FM)
 perform experiments at cryogen trained in planning and performing learn to evaluate and analyze the 	ng complex experiments	
Remarks:	2	
ELECTIVE COMPULSORY MODULE	5	
Workload: Total: 240 h		
Conditions:		Credit Requirements:
Recommended: basic knowledge in so	olid state physics and ferroic properties	Participation in laboratory course and oral examination.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
		1
Contact Hours:	Repeat Exams Permitted:	
Contact Hours: 6	according to the examination	
	-	
	according to the examination	
6 Parts of the Module	according to the examination	rroic properties

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- V. K. Wadhawan, Introduction to ferroic materials (CRC Press)
- S. Kalinin, A. Gruverman, Scanning Probe Microscopy Electrical and electromechanical phenomena at the nanoscale (Springer)
- A. K. Tagantsev, Domains in Ferroic Crystals and Thin films (Springer)

Assigned Courses:

Method course: From macroscopic to microscopic ferroic properties (lecture)

Part of the Module: Method course: From macroscopic to microscopic ferroic properties (Practical Course) Language: English

Contact Hours: 4

Assigned Courses:

Method course: From macroscopic to microscopic ferroic properties (lecture)

Examination

Method course: From macroscopic to microscopic ferroic properties

oral exam / length of examination: 45 minutes

Module PHM-0171 Method Cour		
	se: Coordination Materials	8 ECTS/LP
Method Course: Coordination Material	\$ 	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Dr. Hana Bunzen		
Contents:		
1. Synthesis of metal complexes:		
2. Analytical characterization of me	tal complexes (thermal analysis, UV/vis	spectroscopy, IR spectroscopy, X-ray
diffraction)		
3. Material composition and stabilit		
4. Functional coordination material	s (spin-crossover materials, oxygen-car	rying materials)
Learning Outcomes / Competences		
The students will learn how to:		
 prepare transition metal complex 	kes employing modern preparation tech	niques (e.g. microwave synthesis), inert
synthesis conditions (Schlenk te		
characterize coordination compo	ounds by selected analytical techniques	
 develop functional coordination r 	materials based on organic / inorganic ł	ybrid compounds,
employ X-ray diffraction methods	s for structural analysis.	
Remarks:		
ELECTIVE COMPULSORY MODULE		
Workload:		
Total: 240 h		
20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throug		
20 h studying of course content using		
120 h lecture and exercise course (atte		
Conditions:		Credit Requirements:
none		-
lielle		written report (protocols)
<u> </u>		written report (protocols)
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
Frequency: each summer semester	Recommended Semester: from 2.	
Frequency: each summer semester Contact Hours:		Minimal Duration of the Module:
	from 2.	Minimal Duration of the Module:
Contact Hours:	from 2. Repeat Exams Permitted:	Minimal Duration of the Module:
Contact Hours: 6	from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
Contact Hours: 6 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory course	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory course	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2 Literature:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course: Mode of Instruction: seminar Language: English Contact Hours: 2	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical Co	Minimal Duration of the Module: 1 semester[s]

Examination Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites: Method Course: Coordination Materials (Seminar)

Module PHM-0147: Method Cours	se: Electron Microscopy	8 ECTS/LP
Method Course: Electron Microscopy		
Version 1.3.0 (since SoSe15) Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents:		
Scanning electron microscopy (SEM)		
 Electron optical components Detectors EDX, EBSD 		
Transmission electron microscopy (TEI	M)	
 Diffraction Contrast mechanisms High resolution EM Scanning TEM Analytical TEM Aberration correction 		
Learning Outcomes / Competences: The students:		
 are able to operate SEM and TEL are able to characterize materials Aquire the competence to decide aquire the competence to assess learn to search for scientific litera 	basics, which are afterwards deepen M on a basic level s using different electron microscopy about a technique feasible for a cer EM images, also regarding artefact ature and to formulate a scientific rep	techniques tain problem. s
ELECTIVE COMPULSORY MODULE Workload:		
Total: 240 h 90 h lecture and exercise course (atten 150 h studying of course content using	-	
Conditions: Recommended: knowledge of solid-sta	· · · · · · · · · · · · · · · · · · ·	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

and Materials Scientists	Course: Electronics for Physicists	8 ECTS/L
Method Course: Electronics for P	hysicists and Materials Scientists	
Version 2.0.0 (since SoSe22)		
Person responsible for module: A	ndreas Hörner	
Contents:		
1. Basics in electronic and ele	ctrical engineering	
2. Quadrupole theory		
3. Analog technique, transisto	r and opamp circuits	
4. Boolean algebra and logic		
5. Digital electronics and calcu	Ilation circuits	
6. Microprocessors and Netwo	orks	
7. Basics in Electronic		
8. Implementation of transisto	'S	
9. Operational amplifiers		
10. Digital electronics		
11. Practical circuit arrangement	ht	
Learning Outcomes / Competer	nces:	
The students:		
laboratory, have skills in easy circuit de 	epts and phenomena of electronic and electronic and electronic and electronic and electronic and control technology, a ent working on circuit problems. They can a	nalog and digital electronics,
Remarks: ELECTIVE COMPULSORY MOD	ULE	
	e: Electronics for Physicists and Materia Ints for the lecture Electronics for Physicia	
Workload:		
Total: 240 h		
	using provided materials (self-study)	
140 h studying of course content	using provided materials (self-study)	
140 h studying of course content 60 h lecture (attendance)		
Total: 240 h 140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course	apers (self-study)	
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course	apers (self-study)	Credit Requirements:
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course Conditions:	apers (self-study)	Credit Requirements: written report (one per group)
40 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 80 h internship / practical course Conditions:	apers (self-study) (attendance)	written report (one per group)
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course Conditions:	apers (self-study)	-
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course Conditions: none Frequency: each semester	apers (self-study) (attendance) Recommended Semester:	written report (one per group) Minimal Duration of the Module:
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course Conditions: none Frequency: each semester Contact Hours:	apers (self-study) (attendance) Recommended Semester: from 1.	written report (one per group) Minimal Duration of the Module:
140 h studying of course content 60 h lecture (attendance) 10 h preparation of written term p	apers (self-study) (attendance) Recommended Semester: from 1. Repeat Exams Permitted:	written report (one per group) Minimal Duration of the Module:
140 h studying of course content 50 h lecture (attendance) 10 h preparation of written term p 30 h internship / practical course Conditions: hone Frequency: each semester	apers (self-study) (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	written report (one per group) Minimal Duration of the Module:

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

written exam / length of examination: 90 minutes

Module PHM-0172: Method Course: Functional Silicate-ar Materials Method Course: Functional Silicate-analogous Materials	alogous 8 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Henning Höppe	i
Contents: Synthesis and characterization of functional materials according to the	le topics:
 Silicate-analogous compounds Luminescent materials / phosphors Pigments Characterization methods: XRD, spectroscopy (luminescence, 	UV/vis, FT-IR), thermal analysis
Learning Outcomes / Competences: The students will know how to:	
 develop functional materials based on silicate-analogous mate apply classical and modern preparation techniques (e.g. solid autoclave reactions, use of silica ampoules), work under non-ambient atmospheres (e.g. reducing, inert cor solve and refine crystal structures from single-crystal data, describe and classify these structures properly. 	state reaction, sol-gel reaction, precipitation,
Remarks: ELECTIVE COMPULSORY MODULE	
Workload: Total: 240 h 120 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (se	f-study)
Conditions: Recommended: attendance to the lecture "Advanced Solid State Ma	terials" (protocol)
Frequency: each semester Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: Repeat Exams Permitted: 6 according to the examination regulations of the study program	
Parts of the Module	

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Examination

Method Course: Functional Silicate-analogous Materials seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0148: Method Co Method Course: Optical Properties of	urse: Optical Properties of Solids of Solids	8 ECTS/LP
Version 1.4.0 (since SoSe15) Person responsible for module: Prof	. Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, F	resnel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and GenzelSources and detectors	interferometer	
Terahertz Time Domain spectroscop	у	
Generation of pulsed THz radiGated detection, Austin switch		
Elementary excitations in solid mate	rials	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
 The students know about function these spectroscopic methods, The students obtain the comp The students have the skills to the students have the skills to th	es: principles of far-infrared spectroscopy and lamental optical excitations in condensed etence to plan and carry out complex expe o evaluate and analyze optical data. c skills to search for scientific literature and	matter materials that can be studied by eriments,
Remarks:		
Workload: Total: 240 h 30 h studying of course content usin	ugh exercises / case studies (self-study) g literarture (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in electrodynamics and optics	solid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Course: Method Sin Biophysic		8 ECTS/LF
Version 2.0.0 (since SoSe22)		
Person responsible for module: Dr. Ch	nristoph Westerhausen	
Contents: Unit Membrane biophysics		
 Preparation of synthetic lipid me Size, fluorescence and phase tra Nanoparticle uptake synthetic me 	ansition characterization of lipid memb	ranes
Unit microfluidic		
 Microfluidic systems Fabrication of microfluidic system Calculation of microfluidic problem 		
Unit live cell experiments		
Cell cultureCell couting and separation usin	g microfluidics	
Unit analysis		
Learning Outcomes / Competences The students:	:	
technologies of microfluidic man	immun-histochemical staining procedu oscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Attendance of the lecture "Biophysics	and Biomaterials"	Credit Requirements: 1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Methods in Biophysics	

Contact Hours: 2

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

and Characterization Method Course: Porous Materials - S	rse: Porous Materials - Synthesis	8 ECTS/LF
Version 1.0.0 (since SoSe15 to WS21 Person responsible for module: Prof.	-	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET, Catalytic properties (GC/MS, TR 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	3:	
use modern solid state preparaemploy analytical methods dedi	tion techniques (e.g. hydrothermal, solvo icated to porous materials.	hermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULI		
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throu 20 h studying of course content using	tendance) gh exercises / case studies (self-study) l literarture (self-study)	
Workload: Total: 240 h 120 h internship / practical course (att	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	Credit Requirements: written report (editing time 3 weeks) + written exam
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	written report (editing time 3 weeks) +
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	written report (editing time 3 weeks) + written exam Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0221: Method Method Course: X-ray Diffraction	Course: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.3.0 (since WS15/16) Person responsible for module: PD Dr. Georg Eickerling	Prof. Dr. Wolfgang Scherer	
Contents: Subjects of the practical training of X-ray diffraction techniques:	and the accompanying lecture are the theore	tical basics and the practical application
Data collection and reduction ted	chniques	
Symmetry and space group dete	ermination	
Structural refinements:		
 The Rietveld method Difference Fourier synthesis 		
Structure determination:		
Interpretation of structural refine	ment results	
Errors and Pitfalls: twinning and	disorder	
employing X-ray diffractionhave the skill to perform up	nder guidance phase-analyses and X-ray struchands-on the structure-property relationships	cture determinations
30 h studying of course content	through exercises / case studies (self-study)	
Conditions: none		
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. W. Massa, Crystal structure determination, Berlin, Springer, 2016.

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0153: Method Course: Magnetic and Superconducting Materials Method Course: Magnetic and Superconducting Materials		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	or. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials and	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning tu magnetic susceptibility, electrical specific heat 		
Learning Outcomes / Competences: The students		
 are trained in planning and perfo learn to evaluate and analyze the	, magnetic susceptibility, dc-conductivi rming complex experiments e collected data, are taught to work on easurement results and their interpretat	problems in experimental solid state
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using p 90 h studying of course content throug 30 h studying of course content using I	provided materials (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in solid state physics and quantum mechanics		Credit Requirements: presentation and written report on the
mechanics		experiments (editing time 3 weeks, max. 30 pages)
	Recommended Semester: from 1.	experiments (editing time 3 weeks,
		experiments (editing time 3 weeks, max. 30 pages) Minimal Duration of the Module:
Frequency: each summer semester Contact Hours:	from 1. Repeat Exams Permitted: according to the examination	experiments (editing time 3 weeks, max. 30 pages) Minimal Duration of the Module:

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cou Spectroscopy Method Course: Modern Solid State I		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof.		
Contents:	_	
Physical foundations of NMR spectros	scopy	
Internal interactions in NMR spectros	сору	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in mater	ials science	
Experimental work at the Solid-State	NMR spectrometers, computer-aided an	alysis and interpretation of acquired data
 gain basic practical knowledge can under guidance plan, p characterization of advanced m 	ysical foundations of modern Solid-State of operating a solid-state NMR spectron perform, and analyze modern solid-state	neter,
Remarks: ELECTIVE COMPULSORY MODUL	E	
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions: The attendance of the lecture "NOVE SPECTROSCOPY" is highly recomm		Credit Requirements: Bestehen der Modulprüfung
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: seminar Language: English	: Modern Solid State NMR Spectrosco	ору

Contact Hours: 2

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectros		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. D	Dr. Christine Kuntscher	
Contents: Electrodynamics of solids		
Maxwell equations and electromagneti	c waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semiconc	ductors (Drude)	
ii. Interband absorptions in semiconductioniii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	s	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences:		
The students		
Learn about the basics of the light inter	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: English Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method (Method Course: Thermal Analysis		8 ECTS/LP
Version 1.0.0 (since WS16/17)	·	
Person responsible for module: P	rof, Dr. Ferdinand Haider	
Dr. Robert Horny		
Contents:		
Methods of thermal analysis:		
- Differential Scanning Calorimetr	y: DSC, DTA	
- Thermo-gravimetric Analysis: To	GA	
- Dilatometry: DIL		
- Dynamic-mechanical Analysis: I	DMA	
-Rheology: RHEO		
Advanced Methods:		
- Modulated Differential Scanning	-	
- Evolved Gas Analysis: EGA (GC	CMS, FTIR)	
Learning Outcomes / Competer The students:	ices:	
 get to know the basic princi 	ples of thermal analysis	
learn about fundamental the	ermal processes in condensed matter ,e.g.	phase transitions and relaxation
processes (metals, polyme	rs, ceramics)	
 learn to plan and carry out 	complex experiments and the usage of adv	anced measurement techniques
 learn how to evaluate and a 	-	
are aware of common raw	data artefacts leading to misinterpretation	
Remarks:		
Workload:		
Total: 240 h		
90 h lecture and exercise course	(attendance)	
	rrough exercises / case studies (self-study)	
30 h studying of course content u		
30 h studying of course content u	sing provided materials (self-study)	
Conditions:		Credit Requirements:
		regular participation, oral presentation (10 min), written report
Frequency: irregular	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module	````	
Part of the Module: Method Co	urse: Thermal Analysis	
Mode of Instruction: lecture		
Lecturers: Prof. Dr. Ferdinand H	aider	

Language: English

Frequency: each winter semester

Contact Hours: 2

- Differential scanning calorimetry, Höhne, Hemminger, Flammersheim, H., Springer, 2003
- Practical Gas Chromatography, Dettmer-Wilde, Engewald, Springer, 2014
- Das Rheologie-Handbuch, Mezger, Vincentz, 2010

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course Language: English Frequency: each winter semester Contact Hours: 4

Examination

Method Course: Thermal Analysis report

Module PHM-0224: Method Cours Simulation Method Course: Theoretical Concepts		8 ECTS/LF
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. D	r. Liviu Chioncel	
	ods (computational algorithms) for class . The following common applications w	sical and quantum problems. Python as Il be discussed:
Monte-Carlo integration, stochasFeynman path integrals: the conrOder and disorder in spin system	nection between classical and quantum	systems
The students are able to present		
Remarks: The number of students will be limited t	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	s (self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Requir in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0223: Method Course: Tools for Scientific Computing Method Course: Tools for Scientific Computing	8 ECTS/LP
Version 1.5.0 (since SoSe18) Person responsible for module: Prof. Dr. Gert-Ludwig Ingold	
Contents: Important tools for scientific computing are taught in this module and applistudents. As far as tools depend on a particular programming language, P discussed include:	
 numerical libraries like NumPy and SciPy visualisation of numerical results use of a version control system like git and its application in collabor testing of code profiling documentation of programs 	ative work
 Learning Outcomes / Competences: The students are capable of solving a physical problem of some con They are able to visualize the results and to adequately document the The students know examples of numerical libraries and are able to a The students know methods for quality assurance like the use of uni They know techniques to identify run-time problems. The students know a distributed version control system and are able The students have gained practical experience in a collaborative pro out a programming project in a small group. The students understand the relevance of the tools taught in the metal 	heir program code. Apply them to solve scientific problems. It tests and can apply them to their code. It to use it in a practical problem. Apply they are able to plan and carry
Remarks: The number of students will be limited to 12.	
Workload: Total: 240 h 60 h studying of course content (self-study) 90 h (attendance) 30 h preparation of presentations (self-study) 60 h preparation of written term papers (self-study)	
Conditions: Knowledge of the programming language Python is expected on the level taught in the module PHM-0243 "Einführung in Prinzipien der Programmierung".	Credit Requirements: The module examination needs to be passed which is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Method C Mode of Instruction: lecture Language: English / German Contact Hours: 2	Course: Tools for Scientific Computing	
numerical results. The students know fup of the use 	ne numerical libraries NumPy and SciPy and s indamental techniques for the quality assurar of the version control system git. They are ab and the relevance of the tools taught in the m	nce of programs like the use of unit tests, le to adequately document their code.
 unit tests profiling documentation using 	m Git and workflow for Gitlab/Github docstrings and Sphinx	
	ff, <i>Effective Computation in Physics</i> (O'Reilly, ely available at https://gertingold.github.io/tool:	-
Part of the Module: Method C Mode of Instruction: internshi Language: English / German Contact Hours: 4	Course: Tools for Scientific Computing (Pr	actical Course)
techniques and to visThey have gained so able to appropriatelyThe students are able	me experience in the application of methods document their programs. e to work in a team and know how to make us	for quality assurance of their code and a

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

Examination

Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

a such a such set and	ourse: Charge doping effects in	8 ECTS/LF
semiconductors Method course: Charge doping ef	fects in semiconductors	
Version 1.0.0 (since SoSe21) Person responsible for module: P Dr. Lilian Prodan, Dr. Somnath Gl	rof. Dr. István Kézsmárki]
concentration of charge carriers ir of materials science. For this purp	to make students familiar with the concept of a semiconductors, which is widely used appro- ose, the current method course will be dealined and narrow-gap semiconductors and investigat.	bach in electronics and various fields ng with the preparation of various
The following techniques will be ir	volved:	
crystalline forms using solidRefining the structure and cResistivity and magneto-traHall effect measurements to	hecking phase purity by X-ray powder diffrac nsport measurements; o quantify carrier concentration;	tion;
 Investigation of the doping-i 	nduced changes in the magnetic properties I	by magnetization measurements.
	wledge how to tailor the bulk properties of n	arrow-gap semiconductors via different
 The students gain basic known doping techniques. The students have detailed analyze the data. The students acquire the construction of the students acquire the obtained expension. The students have the skill 	wledge how to tailor the bulk properties of n knowledge in performing XRD and magnetiz mptence to plan and perform Hall effect and imental results. to distinguish between an n-type and p-type calculate the charge, mobility, and charge ca	ation experiments and know how to magnetoresistance experiments and semiconductor.
 The students gain basic known doping techniques. The students have detailed analyze the data. The students acquire the conversion obtained experience. The students have the skill. The students know how to conversion obtained from the students. 	wledge how to tailor the bulk properties of n knowledge in performing XRD and magnetiz imptence to plan and perform Hall effect and imental results. to distinguish between an n-type and p-type calculate the charge, mobility, and charge cal he Hall effect experiments.	ation experiments and know how to magnetoresistance experiments and semiconductor.
 The students gain basic known doping techniques. The students have detailed analyze the data. The students acquire the conservation obtained experiments. The students have the skill. The students know how to construct the students know how to construct the students whether the students have the skill. The students know how to construct the students whether the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the students have the skill. The students know how to construct the skill. 	wledge how to tailor the bulk properties of n knowledge in performing XRD and magnetiz imptence to plan and perform Hall effect and imental results. to distinguish between an n-type and p-type calculate the charge, mobility, and charge cal he Hall effect experiments.	ation experiments and know how to magnetoresistance experiments and semiconductor.
 doping techniques. The students have detailed analyze the data. The students acquire the conversion of the students have the skill. The students have the skill. The students know how to conversion obtained from the students know how to converse. Remarks: ELECTIVE COMPULSORY MOD Workload: Total: 240 h Conditions: 	wledge how to tailor the bulk properties of n knowledge in performing XRD and magnetiz imptence to plan and perform Hall effect and imental results. to distinguish between an n-type and p-type calculate the charge, mobility, and charge cal he Hall effect experiments.	ation experiments and know how to magnetoresistance experiments and semiconductor.
 The students gain basic known doping techniques. The students have detailed analyze the data. The students acquire the conservation obtained experience. The students have the skill with the students have the skill with the students have the skill with the students know how to construct the students know how to construct the students have the skill with the ski	weledge how to tailor the bulk properties of n knowledge in performing XRD and magnetiz imptence to plan and perform Hall effect and imental results. to distinguish between an n-type and p-type calculate the charge, mobility, and charge can be Hall effect experiments.	ation experiments and know how to magnetoresistance experiments and semiconductor. rrier density of a semiconductor using Credit Requirements: Written report on the experiments

Part of the Module: Method course: Charge doping effects in semiconductors (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

Contents:

The following techniques will be involved:

- Synthesis of electron and hole doped narrow-gap semiconductors, such as Zn- and Ge-doped GaV4S8, in poly-crystalline forms using solid state reaction;
- Refining the structure and checking phase purity by X-ray powder diffraction;
- Resistivity and magneto-transport measurements;
- Hall effect measurements to quantify carrier concentration;
- Investigation of the doping-induced changes in the magnetic properties by magnetization measurements.

Part of the Module: Method course: Charge doping effects in semiconductors

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Learning Outcome:

The goal of the method course is to make students familiar with the concept of controlling the type and the concentration of charge carriers in semiconductors, which is widely used approach in electronics and various fields of materials science. For this purpose, the current method course will be dealing with the preparation of various electron-doped and / or hole-doped narrow-gap semiconductors and investigation of the influence of charge doping on transport and magnetic properties.

Examination

Method course: Charge doping effects in semiconductors report

molecules. This course introduces these biomolecules. In the first part of the asic principles of classical and statistical s are introduced including molecular nods are applied to biological systems city and limitations of biomolecular numerically gical matter sults
these biomolecules. In the first part of the asic principles of classical and statistical s are introduced including molecular hods are applied to biological systems city and limitations of biomolecular numerically gical matter
numerically gical matter
Credit Requirements: Passing of the module exam
Minimal Duration of the Module: 1 semester[s]
-

· Computational methods to describe the structure, dynamics and mechanics of biomolecules

Contents:

- · Introduction to classical mechanics in phase space
- · Probability and information theory
- · Connection to statistical mechanics
- Molecular dynamics basics
- Monte Carlo Simulations
- · Forces and force fields in biomolecular systems
- · Simulations in different ensembles
- Calculating macroscopic thermodynamic properties from simulations

Literature:

- Daniel M. Zuckerman, Statistical Physics of Biomolecules (2010 by Taylor and Francis Inc.)
- Ken Dill and Sarina Bromberg, *Molecular Driving Forces* (2012 by Taylor and Francis Inc; 2nd edition)
- Daan Frenkel and Berend Smit, Understanding Molecular Simulation (2002 by Elsevier, 2nd edition)

Part of the Module: Method Course: Computational Biophysics (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Learning Outcome:

- Students learn to solve typical biophysical problems analytically and numerically
- · Students learn to run and analyze computer simulations of biological matter
- · Students learn to visualization, documentation and presentation of results

Contents:

The methods and tools discussed in the lecture will be applied to typical biophysical problems and biological systems. The students work individually or in small teams under supervision. The students present their solutions, document their simulations and summarize their results in a final report.

Examination

Method Course: Computational Biophysics

written exam / length of examination: 2 hours

Module PHM-0158: Introduction Introduction to Materials	to Materials (= Seminar)	4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Ferdinand Haider	
Contents: Varying topics for each year, giving a modern materials.	n overview into scope, application, requ	uirements and preparation of all types of
Learning Outcomes / Competences The students:	S:	
	cations and processes of modern material pile knowledge for examples of material audience.	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h		
Conditions: Recommended: basic knowledge in n	naterials science	Credit Requirements: regular participation, oral presentation with term paper (30 - 45 minutes)
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Introduction to Mode of Instruction: seminar Language: English Contact Hours: 2	Materials (Seminar)	

specific for each topic, to be gathered by the students

Assigned Courses:

Introduction to Materials (Seminar) (seminar)

Examination

Introduction to Materials presentation Examination Prerequisites: Introduction to Materials

Module PHM-0159: Laboratory Project Laboratory Project		10 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	. Dr. Dirk Volkmer	
Contents: Experimental or theoretical work in a 3 months.	laboratory / research group in the Instit	ute of Physics. Has to be conducted withir
Learning Outcomes / Competence The students:	25:	
research groups,experience the day to day life it		oject in the existing laboratories within the thesis.
	d in SoSe 2020 as soon as the current s	situation allows.
COMPULSORY MODULE Workload: Total: 300 h		
Conditions: Recommended: solid knowledge in (Materials Science, both experimenta		Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester Siehe Bemerkungen	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laboratory Pro Mode of Instruction: internship Language: English Contact Hours: 8	oject	
Literature: • Various		

Examination Laboratory Project project work Examination Prerequisites: Laboratory Project

Module PHM-0057: Physics of Th Physics of Thin Films	nin Films	6 ECTS/LP
Version 1.6.0 (since WS09/10) Person responsible for module: PD Dr.	German Hammerl	
Contents: • Thin film growth: basics, thermoo • Thin film growth techniques: vac	dynamic considerations, surface kinetics, uum technology, physical vapor deposition thin films: in-sit methods, ex-situ method	on, chemical vapor deposition
Learning Outcomes / Competences: The students:		
 have the competence to deal wit are able to choose the right subs application conditions, aquire skills of combining the var applications, and 	ods of thin film technology and material p h current problems in the field of thin film strates and thin film materials for epitaxia rious technologies for growing thin layers rch for scientific literature, unterstand tec perimental results.	technology largely autonomous, I thin film growth to achieve desired with respect to their properties and
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using I 60 h lecture and exercise course (atter 20 h studying of course content using p	iterarture (self-study) ndance)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Thin Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	Films	
Contents: see module description		

- H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987)
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001)
- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

Examination

Physics of Thin Films

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics of Thin Films

Module PHM-0058: Organic S Drganic Semiconductors	Semiconductors	6 ECTS/LF
/ersion 1.3.0 (since WS09/10)		
Person responsible for module: P	rof. Dr. Wolfgang Brütting	
Contents: Basic concepts and applications c	of organic semiconductors	
ntroduction		
 Materials and preparation Structural properties Electronic structure Optical and electrical properties 	rties	
Devices and Applications		
 Organic metals Light-emitting diodes Solar cells Field-effect transistors 		
earning Outcomes / Competer	ices:	
functioning of components,and have the competence to	classification of the materials taking into acco o comprehend and attend to current problems oft skills: practicing technical English, working	s in the field of organic electronics.
	rough exercises / case studies (self-study) sing provided materials (self-study)	
Conditions: t is strongly recommended to con ddition, knowledge of molecular	nplete the module solid-state physics first. In physics is desired.	
requency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination regulations of the study program	
		*
Parts of the Module		

Language: English

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting: Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)
- S.R. Forrest: Organic Electronics (Oxford Univ. Press)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: every 3rd semester

Contact Hours: 1

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

. Dr. Philipp Gegenwart	
nperatures	
and entanglement in matter	
25:	
knowledge to perform low-temperature m	easurements,
g provided materials (self-study) g literarture (self-study) tendance) ugh exercises / case studies (self-study)	
Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Repeat Exams Permitted: according to the examination regulations of the study program	
ure Physics	
	Ind entanglement in matter Instant Instant

see module description

Contents:

- · Introduction (temperature scale, history of low temperature physics)
- Properties of matter at low temperatures (specific heat, thermal expansion, electrical resistance, thermal conductivity)
- Cryoliquids and superfluidity (nitrogen, hydrogen, 4-He and 3-He: phase diagrams, superfluidity)
- Cryogenic engineering (liquefaction of gases, helium cryostats, dilution refrigerator, adiabatic demagnetization, further techniques)
- · Thermometry (primary and secondary thermometers at different temperature regimes)
- Quantum Matter (quantum Transport, Quantum phase transitions, Quantum spin liquids)

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Low Temperature Physics

Module PHM-0066: Supercond		6 ECTS/LP
Superconductivity		
Version 1.0.0 (since WS11/12)		
Person responsible for module: Prof	. Dr. Philipp Gegenwart	
Contents: Introductory Remarks and Lite History and Main Properties o Phenomenological Thermodyr Ginzburg-Landau Theory Microscopic Theories	erature f the Superconducting State, an Overview namics and Electrodynamics of the SC the Nature of the Superconducting State uctors ity	
 Special attention will be drawn the superconducting state, to For self-studies a comprehens Workload: Total: 180 h 60 h lecture and exercise course (at 80 h studying of course content thro 20 h studying of course content using 	ugh exercises / case studies (self-study) g literarture (self-study)	-
 20 h studying of course content usin Conditions: Physik IV – Solid-state physic Theoretical physics I-III 		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc Mode of Instruction: lecture Language: English Contact Hours: 4	tivity	
Learning Outcome: see module description		
Contents:		

Contents:

see module description

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola, 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Assigned Courses:

Superconductivity (lecture)

*(online/digital) *

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Module PHM-0252: Optical Exci	tations in Materials	6 ECTS/LP
Optical Excitations in Materials		
Version 1.9.0 (since SoSe20)		
Person responsible for module: Prof.	Dr. Joachim Deisenhofer	
Contents: 1. Classical Light-Matter Interation in	Solids:	
 Classical electromagnetic wave reflection, transmission, absorp Anisotropic media, birefringenc Classical Drude-Lorentz oscilla 	e, longitudinal solutions	
2. Quantum Aspects of Light-Matter in	nteraction	
 qm approach to absorption and Electric-dipole and magnetic-dip Rabi-oscillations and the need to A glimpse of non-linear optics 		Golden Rule
3. Exitations in different material class	Ses	
 Optical properties of semicondul Absorption and Luminescence, Optoelectronics, detectors, light Quantum confined structures: to 	t emitting devices	ais
 The students have detailed known competence to choose adequate material classes. The students have a basic under the students are able apply the students apply the students are able apply the students are abl	s: edge of the fundamental concepts of light-rough wledge of classical models of light-propage te spectroscopic techniques for measuring erstanding of quantum aspects of optical ese concepts to understand and analyse o skills to search for scientific literature and	gation and absorption and get the g the optical properties of different processes in different materials. ptical properties of different materials.
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using 60 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions: Basic knowledge of classical electrod	ynamics, atomic and solid state physics.	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Optical Excitations in Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

ECTS Credits: 6.0

Literature:

- 1. Mark Fox, Optical Properties of Solids, Oxford Master Series
- 2. Mark Fox, Quantum Optics: An Introduction, Oxford Master Series
- 3. David B. Tanner, Optical Effects in Solids, Cambridge University Press
- 4. Y. Toyozawa, Optical Processes in Solids, Cambridge University Press

Assigned Courses:

Optical Excitations in Materials (lecture)

Examination

Optical Excitations in Materials

written exam / length of examination: 90 minutes

	terials	6 ECTS/LF
Dielectric Materials		
Version 1.2.0 (since SoSe20)		
Person responsible for module: PD Dr.	. Peter Lunkenneimer	
Contents: • Experimental techniques: quantitimeasurements	ties, broadband dielectric spectroscopy, i	nonlinear and polarization
	materials: relaxation processes, phenom ed matter: liquids, glasses, plastic crystals	-
 Charge transport: hopping condu 	uctivity, universal dielectric response	
 Ionic conductivity: conductivity m devices 	nechanism, dielectric properties, advance	d electrolytes for energy-storage
 Maxwell-Wagner relaxations: equipation materials 	uivalent-circuits, applications (supercapa	citors), colossal-dielectric-constant
 Electroceramics: Materials, Prop Applications 	erties (relaxor ferroelectric, ferroelectric,	antiferroelectric and multiferroic),
in a broad frequency range. They have	e the competence to select materials for o	different kinds of applications and to
critically assess experimental results o	-	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module	-	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload:	-	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h	n dielectric properties.	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter	n dielectric properties.	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p	n dielectric properties. ndance) provided materials (self-study)	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p	n dielectric properties. ndance) provided materials (self-study) literarture (self-study)	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p	n dielectric properties. ndance) provided materials (self-study) literarture (self-study)	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions:	n dielectric properties. ndance) provided materials (self-study) literarture (self-study) h exercises / case studies (self-study)	different kinds of applications and to
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions: Basic knowledge of solid state physics	n dielectric properties. ndance) provided materials (self-study) literarture (self-study) h exercises / case studies (self-study)	different kinds of applications and to Minimal Duration of the Module: 1 semester[s]
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions: Basic knowledge of solid state physics Frequency: each summer semester	n dielectric properties. ndance) provided materials (self-study) literarture (self-study) h exercises / case studies (self-study) Recommended Semester: from 2.	Minimal Duration of the Module:
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions: Basic knowledge of solid state physics Frequency: each summer semester	n dielectric properties. ndance) provided materials (self-study) literarture (self-study) h exercises / case studies (self-study) Recommended Semester:	Minimal Duration of the Module:
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions: Basic knowledge of solid state physics Frequency: each summer semester Contact Hours:	n dielectric properties.	Minimal Duration of the Module:
critically assess experimental results o Remarks: Elective compulsory module Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using p 80 h studying of course content throug Conditions: Basic knowledge of solid state physics Frequency: each summer semester Contact Hours:	n dielectric properties. ndance) provided materials (self-study) literarture (self-study) h exercises / case studies (self-study) k Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:

Mode of Instruction: lecture

Lecturers: PD Dr. Stephan Krohns, PD Dr. Peter Lunkenheimer Language: English / German

- F. Kremer and A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002).
- F. Kremer and A. Loidl (eds.), The scaling of relaxation processes (Springer, Cham, 2018).
- A.K. Jonscher, Dielectric Relaxations in Solids (Chelsea Dielectrics Press, London, 1983).
- C.J.F. Böttcher and P. Bordewijk, Theory of electric polarisation Vol II (Elsevier, Amsterdam, 1973).
- S.R. Elliott, Physics of Amorphous Materials (Longman, London, 1990)
- A.J.Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003)
- R. Waser, U. Böttger, S. Tiedke, Polar Oxides: Properties, Characterization, and Imaging (Wiley, 2005)

Examination

Dielectric Materials Dielectric Materials

presentation / length of examination: 45 minutes

Examination Prerequisites:

Dielectric Materials

Module PHM-0051: Biophysics a	nd Biomaterials	6 ECTS/L
Biophysics and Biomaterials		
Version 1.1.0 (since SoSe22) Person responsible for module: Dr. Ste		
Westerhausen, Christoph, Dr.		
Contents:		
Transcription and translation		
Membranes		
 DNA and proteins 		
Enabling technologies		
MicrofluidicsRadiation Biophysics		
Learning Outcomes / Competences:		
The students know:		
basic terms, concepts and phene	omena of biological physics	
 models of the (bio)polymer-theoretic strategies, membranes and proteins 	ry, microfluidics, radiation biophysics, n	anobiotechnology, sequencing
The students obtain skills		
· for independent processing of pr	oblems and dealing with current literatu	ıre.
• to translate a biological observat	ion into a physical question.	
The students improve the key compete	ences:	
self-dependent working with Eng	lish specialist literature.	
· processing and interpretation of	experimental data.	
interdisciplinary thinking and wo	rking.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter 20 h studying of course content using (-	
80 h studying of course content throug		
20 h studying of course content using I		
Conditions:		
Mechanics, Thermodynamics, Statistic	al Physics	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
	Biomaterials	

Language: English

Contact Hours: 3

Learning Outcome:

See module description.

Contents:

- Radiation Biophysics
 - Radiation sources
 - Interaction of radiation with biological matter
 - Radiation protection principles
 - Low dose radiation
 - $\circ~$ LNT model in radiation biophysics
- Microfluidics
 - Life at Low Reynolds Numbers
 - The Navier-Stokes Equation
 - Low Reynolds Numbers The Stokes Equation
 - Breaking the Symmetry
- Membranes
 - Thermodynamics and Fluctuations
 - Thermodynamics of Interfaces
 - Phase Transitions 2 state model
 - · Lipid membranes and biological membranes, membrane elasticity
- Membranal transport
 - Random walk, friction and diffusion
 - Transmembranal ionic transport and ion channels
 - Electrophysiology of cells
 - Neuronal Dynamics

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- lecture notes

Part of the Module: Biophysics and Biomaterials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

See module description.

Examination

Biophysics and Biomaterials written exam / length of examination: 90 minutes Examination Prerequisites:

Biophysics and Biomaterials

		_
Module PHM-0059: Magnetisn Magnetism	1	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda	
Contents:		
 History, basics 		
-	and quantum phenomenology	
Exchange interaction and me		
Magnetic anisotropy and mag		
Thermodynamics of magnetic		
 Magnetic domains and domains Magnetization processes and 		
 AC susceptibility and ESR 	micro magnetic treatment	
 Spintransport / spintronics 		
 Recent problems of magnetis 	m	
Learning Outcomes / Competenc		
The students:	es.	
for their description, like meanhave the ability to classify diff interpretation, and	d phenomena of magnetic materials and th n-field theory, exchange interactions and n erent magnetic phenomena and to apply th ndently to treat fundamental and typical top it skills.	nicro magnetic models, ne corresponding models for their
Total: 180 h 60 h lecture and exercise course (a 80 h studying of course content thro 20 h studying of course content usin 20 h studying of course content usin	bugh exercises / case studies (self-study) ng literarture (self-study)	
Conditions:		
basics of solid-state physics and qu	antum mechanics	
Frequency: annually	Recommended Semester:	Minimal Duration of the Module:
· · · · · · · · · · · · · · · · · · ·	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Magnetism		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		
Contents:		
see module description		

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices	rectinology of defined nucleon	0 2010/21
Physics and Technology of Semicondu	ictor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: apl. Pr	of. Dr. Helmut Karl	
Contents:		
 Basic properties of semiconductor Semiconductor diodes and trans Semiconductor technology 	ors (electronic bandstructure, doping, car istors	rrier excitations and carrier transport)
Learning Outcomes / Competences:		
 excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	ts (effective mass, quasi-Fermi levels) to describe and understand the operation p relevant methods and tools in semicono ls: autonomous working with specialist lit y for teamwork, ability to document expe provided materials (self-study) iterarture (self-study) h exercises / case studies (self-study)	o describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Conditions:		
recommended prerequisites: basic kno physics and quantum mechanics.	wledge in solid state physics, statistical	
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Teo Mode of Instruction: lecture Language: English Contact Hours: 3	hnology of Semiconductor Devices	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur	res / Nanophysics	6 ECTS/LP
Nanostructures / Nanophysics		
Version 1.2.0 (since WS09/10) Person responsible for module: Prof. D	Dr. István Kézsmárki	
Contents:		
 Magnetotransport in low-dimension Optical properties of nanostructure Fabrication and detection technic 	vires and dots, low dimensional electron ional systems, Quantum-Hall-Effect, Qua ires and their application in modern opto ques of nanostructures ires (Ferroelectricity, Magnetism, Multife	antized conductance electonic devices, Nanophotonics
 The students have detailed know be applied for novel functional de The students gain competence in nanostructures. The students are able apply these 	Ige of the fundamental concepts in mode vledge of low-dimensional semiconducto evices for high-frequency electronics and n selecting different fabrication and char se concepts to tackle present problems in kills to search for scientific literature and	r structures and how these systems can d optoelectronics acterization approaches for specific n nanophysics.
Workload: Total: 180 h		
80 h studying of course content throug	h exercises / case studies (self-study)	
20 h studying of course content using I	iterarture (self-study)	
60 h lecture and exercise course (atter		
20 h studying of course content using p	provided materials (self-study)	
Conditions: recommended prerequisites: basic knc quantum mechanics.	wledge in solid-state physics and	
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures Mode of Instruction: lecture Language: English Contact Hours: 4	/ Nanophysics	

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics oral exam / length of examination: 30 minutes Examination Prerequisites: Nanostructures / Nanophysics

Module PHM-0203: Physics of C Physics of Cells	ells	6 ECTS/L
Version 1.3.0 (since SoSe22) Person responsible for module: Dr. Cł	nristoph Westerhausen	
 Thermodynamics of proteins an Physical methods and technique Cell adhesion – interplay of specific 	es for studying cells cific, universal and elastic forces of tissue - macromolecules of the extra c s of the cell as a biomaterial	
Learning Outcomes / Competences		
The students		
properties.know the basic functionality of nknow physical descriptions of fu	of human cells, as building blocks of livin nechanical and optical methods to study ndamental biological processes and pro questions and define model systems to	living cells perties of biomaterials.
The students improve the key compet	ences:	
 self-dependent working with Eng processing of experimental data interdisciplinary thinking and wo 		
Workload:		
60 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study)	
Conditions: Mechanics, Thermodynamics		Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Cells Mode of Instruction: lecture Language: English / German Contact Hours: 2	5	
Learning Outcome: see module description		

Contents: see module description Literature: • Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010. • Heimburg, Thomas. Thermal Biophysics of Membranes. Wiley-VCH, 2007 • Nelson, Philip. Biological physics. New York: WH Freeman, 2004. • Boal, D. Mechanics of the Cell. Cambridge University Press, 2012 · Lecture notes **Assigned Courses:** Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description **Contents:** see module description Literature: see module description Assigned Courses:

Physics of Cells (Tutorial) (exercise course)

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

Module PHM-0054: Chemical Phy Chemical Physics II	/sics II	6 ECTS/LP
Version 1.3.0 (since WS09/10) Person responsible for module: Prof. D PD Dr. Georg Eickerling	or. Wolfgang Scherer	
Contents: Introduction to computational che Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanism calculation of physical and chem	ns	
Learning Outcomes / Competences: The students:		-
 molecules and solid-state compo have therefore the competence to Fock and Density Functional The materials with regard to their che 	o autonomously perform simple quantun eory (DFT) and to interpret the electronic	n chemical calculations using Hartree- structure of functional molecules and
Remarks: It is possible for students to do quantur molecules on a computer cluster within	n chemical calculations autonomously a the scope of the tutorial.	nd analyze electronical structures of
Workload: Total: 180 h 60 h lecture and exercise course (atten 80 h studying of course content throug 20 h studying of course content using I 20 h studying of course content using p	h exercises / case studies (self-study) iterarture (self-study)	
Conditions: It is highly recommended to complete t	he module Chemical Physics I first.	
Frequency: each summer semester not in summer term 23	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic Mode of Instruction: lecture Language: English Contact Hours: 3	es II	

Learning Outcome:

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Coordination Materials	n Materials	6 ECTS/LF
/ersion 1.0.0 (since SoSe15) Person responsible for module: Prof. I Dr. Hana Bunzen	Dr. Dirk Volkmer]
Contents:		
A) Basics of coordination Chemistry		
 Historical development of coord Structures and nomenclature ru Chemical bonds in transition metal coord Stability of transition metal coord Characteristic reactions [3] 	les [2] etal coordination compounds [3]	
 Selected classes of functional mate 	erials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination 	dical applications [3]	
Learning Outcomes / Competences The students	:	
transition metal compounds),broaden their capabilities to inte coordination compounds,	concepts of chemical bonding in coordina rpret UV/vis absorption spectra and to pr of coordination chemistry onto topics of m kills.	edict stability and reactivity of
Remarks: ELECTIVE COMPULSORY MODULE	<u> </u>	
Workload: Fotal: 180 h 50 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 30 h studying of course content throug	literarture (self-study)	
Conditions:		
Conditions: Recommended: The lecture course is Chemistry II"	based on the courses "Chemistry I",	
Recommended: The lecture course is	based on the courses "Chemistry I", Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Advanced Solid State Materials	blid State Materials	6 ECTS/LF
Version 1.0.0 (since WS10/11) Person responsible for module: Prof. [Dr. Henning Höppe	
Contents: Repitition of concepts Novel silicate-analogous materia Luminescent materials Pigments Heterogeneous catalysis 	als	
acquire skills to predict the prop	lations between composition, structures erties of chemical compounds, based or e potential of functional materials for futu- roperties of these materials.	their composition and structures,
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throug		
	provided materials (self-study)	
20 h studying of course content using Conditions: Contents of the modules Chemie I, an	d Chemie II or Festkörperchemie	
20 h studying of course content using Conditions:	d Chemie II or Festkörperchemie	Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using Conditions: Contents of the modules Chemie I, an (Bachelor Physik, Bachelor Materialwi	d Chemie II or Festkörperchemie ssenschaften) Recommended Semester:	
20 h studying of course content using Conditions: Contents of the modules Chemie I, an (Bachelor Physik, Bachelor Materialwi Frequency: each summer semester Contact Hours:	d Chemie II or Festkörperchemie ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
20 h studying of course content using Conditions: Contents of the modules Chemie I, an (Bachelor Physik, Bachelor Materialwi Frequency: each summer semester Contact Hours: 4	d Chemie II or Festkörperchemie ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
20 h studying of course content using Conditions: Contents of the modules Chemie I, an (Bachelor Physik, Bachelor Materialwi Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English	d Chemie II or Festkörperchemie ssenschaften) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	

- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Part of the Module: Advanced Solid State Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0217: Advanced X- Techniques Advanced X-ray and Neutron Diffraction		6 ECTS/L
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. E PD Dr. Georg Eickerling		
Contents: Subjects of the lecture are advanced >	-ray and neutron diffraction techniques:	
Beyond the standard model: TheHow to obtain and analyze expe	rimental charge densities sical properties from diffraction data	iction
Learning Outcomes / Competences		
 neutron diffraction data know the basics of the <i>Quantum</i> are competent to analyze the top properties of materials 	e on the reconstruction of accurate electr Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten	h exercises / case studies (self-study) literarture (self-study)	
Conditions:		
It is recommended to complete the Mc		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
	and Neutron Diffraction Techniques	

Contact Hours: 3

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

Module PHM-0114: Porous Fun Porous Functional Materials	ctional Materials	6 ECTS/LF
Version 1.0.0 (since SS11 to WS22/2	3)	
Person responsible for module: Prof.		
Contents:		
 Overview and historical develop 	oments	
 Structural families of porous fra 	meworks	
 Synthesis strategies 		
 Adsorption and diffusion 		
 Thermal analysis methods 		
 Catalytic properties 		
Advanced applications and cur	rent trends	
Learning Outcomes / Competence	S:	
 The students shall acquire know 	wledge about design principles and syr	thesis of porous functional materials,
	aracterize porous solid state materials	with special emphasis laid upon sorption
and thermal analysis,		
•••	technical applications of porous solids.	
Integrated acquirement of soft	skills	
Remarks:		
This module and the exams for this	s module will be offered in WS 2022/	23 for the last time !
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	endance)	
	gh exercises / case studies (self-study)
20 h studying of course content using		
20 h studying of course content using	provided materials (self-study)	
Conditions:		Credit Requirements:
participation in the course Materials (Chemistry	one written examination, 90 min
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Contact Hours: 4		
	Repeat Exams Permitted:	
	Repeat Exams Permitted: according to the examination	
4	Repeat Exams Permitted: according to the examination regulations of the study program	
4 Parts of the Module Part of the Module: Porous Function	Repeat Exams Permitted: according to the examination regulations of the study program	
4 Parts of the Module	Repeat Exams Permitted: according to the examination regulations of the study program	

Contents:

see module description

Literature:

- Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)
- · selected reviews and journal articles cited on the slides

Assigned Courses:

Porous Functional Materials (lecture)

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0218: Novel Meth Spectroscopy	ods in Solid State NMR	6 ECTS/LI
Novel Methods in Solid State NMR Spectroscopy		
Version 1.0.0 (since SoSe17) Person responsible for module: Prof	. Dr. Leo van Wüllen	
Contents:		
The physical basis of nuclear magne	etic resonance	
Pulsed NMR methods; Fourier Trans	sform NMR	
Internal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to	obtain specific information about the stru	cture and dynamics of solid materials
Recent highlights of the application	of modern solid state NMR in materials s	cience
Workload:		
Total: 180 h		
Conditions: none		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Method Mode of Instruction: lecture Language: German Contact Hours: 3	s in Solid State NMR Spectroscopy	
Assigned Courses:		
Novel Methods in Solid State NMF	Spectroscopy (lecture)	
Novel methods in Solid State Nmr		
Part of the Module: Novel Method Mode of Instruction: exercise cours Language: German Contact Hours: 1	s in Solid State NMR Spectroscopy (T se	utorial)
Literature: 1. M. H. Levitt, Spin Dynamics, J	y, Wiley 2001.	ishina Ltd., 2004.
 H. Günther, NMR spectroscop M.Duer, Introduction to Solid-S 	blate runn speetroscopy, blackwen rub	
3. M.Duer, Introduction to Solid-S		

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents: Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences: The students:	
 know the the fundamental basics, mechanics, types of corrosion process explanation obtain the skill to understand typical electrochemical quantification of corrosion phenomena from typical dar 	rrosion processes.
Remarks: Scheduled every second summer semster.	
Workload: Total: 180 h 60 h lecture and exercise course (attendance)	

120 h studying of course content using	provided materials (self-study)	
Conditions: Recommended: good knowledge in ma physical chemistry	aterials science, basic knowledge in	Credit Requirements: written exam (90 min)
Frequency: each summer semester alternating with PHM-0168	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Frequency: each winter semester

Contact Hours: 3

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each winter semester

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0264: Functional and Smart Macromolecular Materials	6 ECTS/LP	
Version 1.2.0 (since WS21/22) Person responsible for module: PD Dr. Klaus Ruhland		
Contents: <u>Electro-active polymeric materials</u>		
Intrinsically electric conducting polymers (ICPs)		
Working principles of ICPs in selected applications		
Red/Ox-responsive ICPs		
Electrochromism		
Electroactive Actuators		
 Non-electric-conducting electrically functional polymers 		
Ferroelectric polymers		
Piezoelectric polymers		
Dielectric elastomers		
Thermo-active polymeric materials		
 Difference between invertibility and reversibility 		
 Pyro-electric effect vs electro-caloric effect 		
 High-temperature-stabile polymers 		
Thermochromic polymers		
Mechano-active polymeric materials		
Shape-Memory-polymers		
Self-healing polymers		
Photo-active polymeric materials		
 Important chromophors and switching mechanisms 		
Photo-responsive polymerization initiators and catalysts		
Smart polymer gels		
 Thermo-responsive polymer gels (LCST/UCST) 		
Electrically charged polymer gels		
pH-responsive polymer gels		
Learning Outcomes / Competences:		
The Students get to know which functional properties can be implemented	into macromolecular marterials by action of	
which external stimulus.	,	
They reach the ability to differentiate between different mechanisms to intr	oduce smart behaviour into polymeric	
materials and to decide about dependences between different external stir		
They will be competent to design smart functional multi-resonsive macrom	olecular materials that serve specific	
application needs time- and space-dependent.		
Examples for applications of this type of material design will be discussed.		
Workload: Total: 180 h		
80 h studying of course content using provided materials (self-study)		
20 h studying of course content using provided materials (self-study)		
60 h lecture (attendance)		
20 h exercise course (attendance)		
Conditions:	Credit Requirements:	
none	passing the final examination	

Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Functional and Smart Macromolecular Materials

Mode of Instruction: lecture

Language: German

Contact Hours: 4

Contents:

see description of the module

Lehr-/Lernmethoden:

see description of the module

Literature:

- Smart Polymers and their Applications; M. R. Aguilar, J. S. Roman (ISBN 978-0-85709-695-1)
- Functional Monomers and Polymers; K. Takemoto, R. M. Ottenbrite, M. Kamachi (ISBN 0-8247-9991-7)
- Biomedical Applications of Electroactive Polymer Actuators; F. Carpi, E. Smela (ISBN 978-0-470-77305-5)
- Electroactive Polymer Actuators as Artificial Muscles; Y. Bar-Cohen (ISBN0-8194-5297-1)
- Smart Polymers; I. Galaev, B. Mattiasson (ISBN 978-0-8493-9161-3)
- Semiconducting and Metallic Polymers; A. J. Heeger, N. S. Sariciftci, E. B. Namdas (ISBN 978-0-19-852864-7)
- Polymers and Light; W. Schnabel (ISBN978-3-527-31866-7)
- Shape Memory Polymers; J. Hu (ISBN 978-1-90903-050-3)
- Shape Memory Maerials; D. I. Arun, P. Chakravarthy, K. R. Arockia, B.
- Santhosh (ISBN 978-0-367-57169-6)
- Polymer Materials with Smart Properties; M. Bercea (ISBN 978-1-62808-876-2)
- Self-healing Materials; K. Ghosh (ISBN 978-3-527-31829-2)
- Self-Healing Polymers; W. H. Binder (ISBN 978-3-527-33439-1)
- High Performance Polymers; J. K. Fink (ISBN 978-0-8155-1580-7)
- Functional Coatings; S. K. Ghosh (ISBN 978-3-527-31296-2)
- Handbook of Stimuli-Responsive Materials; M. W. Urban (ISBN 978-3-527-32700-3)
- Renewable Resources for Functional Polymers and Biomaterials; P. A. Williams (ISBN 978-1-84973-245-1)
- Thermochromic and Thermotropic Materials; A. Seeboth, D. Lötzsch (ISBN 978-981-4411-02-8)
- Thermochromic Phenomena in Polymers; A. Seeboth, D. Lötzsch (ISBN 978-1-84735-112-8)
- Shape-Memory Polymers for Aerospace Applications; G. P. Tandon, A. J. W. McClung, J. W. Baur (ISBN 978-1-60595-118-8)
- Polymer Mechanochemistry; R. Boulatov (ISBN 978-3-319-22824-2

Assigned Courses:

Functional and Smart Macromolecular Materials (lecture)

Examination

Functional and Smart Macromolecular Materials

written exam / length of examination: 90 minutes

Module MRM-0126: Ceramic Mat Keramische Faserverbundwerkstoffe	rix Composites	6 ECTS/LP
Version 3.0.0 (since WS21/22) Person responsible for module: Prof. [Pr-Ing Dietmar Koch	
Contents:		
Introduction in ceramic matrix coBasics of processing of technica	I ceramics trix composites (CMC) from raw materia ramic fibers	als to product
 The students have the competer describe their specific properties The students know the Weibull s The students know how to describe The students get the knowledge according material for specific a 	ncepts of mechanical behavior of ceram nce to explain processing of ceramic fib statistics which describe the fiber streng ribe mechanical interactions between fib of application of ceramic matrix compo	ers and ceramic matrix composites and th distribution per and matrix sites and are able to choose the
120 h studying of course content using 60 h lecture and exercise course (atte		
Conditions: Recommended: basic knowledge of m	aterials	Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Keramische Fas Mode of Instruction: lecture Language: English Contact Hours: 3	serverbundwerkstoffe	
Learning Outcome: see description of module		

- N.P. Bansal, J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology. John Wiley & Sons, Inc., 2015.
- W. Krenkel, Ceramic Matrix Composites. Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- K. K. Chawla, Composite Materials 3rd ed., Springer, 2012
- T. Ohji, M. Singh, Engineered Ceramics: Current Status and Future Prospects, ISBN: 978-1-119-10042-3, 2015

Assigned Courses:

Keramische Faserverbundwerkstoffe (lecture)

Examination

Keramische Faserverbundwerkstoffe

written exam, written exam / length of examination: 60 minutes

Parts of the Module

Part of the Module: Übung Keramische Faserverbundwerkstoffe

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see description of module

Assigned Courses:

Keramische Faserverbundwerkstoffe (lecture)

Module PHM-0164: Characteriza Characterization of Composite Materia		6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Markus Sause	1
Contents: The following topics are presented:		
 Introduction to composite materi Applications of composite materi Mechanical testing Thermophysical testing Nondestructive testing 		
Learning Outcomes / Competences The students:	:	
are introduced to important conc		composite materials. d material models applied to composites. topic using various forms of information.
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atter 80 h studying of course content throug	provided materials (self-study) ndance)	/)
Conditions: Recommended: basic knowledge in m composite materials	aterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Materials Properties	rced Composites: Processing and	6 ECTS/LP
Fiber Reinforced Composites: Proces	sing and Materials Properties	
Version 1.2.0 (since SoSe15) Person responsible for module: Dr. Ju	dith Moosburger-Will	
	es of fibers and their precursor materials as of commonly used polymeric and cerar gies	nic matrix materials
Learning Outcomes / Competences The students:	:	
 know the basics of production te know the application areas of co have the competence to explain have the competence to choose 	properties of fibers, matrices, and fiber-r echnologies of fibers, polymeric, ceramic omposite materials. In material properties of fibers, matrices, and the right materials according to application re further knowledge of the scientific topic	matrices, and fiber-reinforced materials nd composites. on relevant conditions.
ELECTIVE COMPULSORY MODULE	E	
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	provided materials (self-study)	
Conditions: Recommended: basic knowledge in morganic chemistry	naterials science, basic lectures in	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
	1	1
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module MRM-0052: Functional	Polymers	6 ECTS/LF
Version 1.0.0 (since SoSe15)		
Person responsible for module: PD [Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer science 	9	
 Elastomers and elastoplastic n 	naterials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting polyme 	rs	
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
Polymers with second order no	on-linear optical properties	
Polymeric catalysts		
Self-healing polymers		
 Polymers in bio sciences> 		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throu	g provided materials (self-study) ugh exercises / case studies (self-study)	
20 h studying of course content union		
60 h lecture and exercise course (att		
Conditions:		
	-0035 (Chemie I), PHM-0036 (Chemie II) ymerchemie und -physik)	
Frequency: irregular will not be	Recommended Semester:	Minimal Duration of the Module:
offered in the next time	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	1	l
Parts of the Module		
Part of the Module: Functional Pol		

Part of the Module: Functional Polymers

Mode of Instruction: lecture

Language: English Contact Hours: 3

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each summer semester

Contact Hours: 1

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0122: Non-Destructive Testing	tive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof.	Dr. Markus Sause	
Contents: Introduction to nondestructive te Visual inspection Ultrasonic testing Guided wave testing Acoustic emission analysis Thermography Radiography Eddy current testing Specialized nondestructive met Learning Outcomes / Competences	nods	
are introduced to important con	f nondestructive evaluation of materials cepts in nondestructive measurement t re further knowledge of the scientific to kills	echniques,
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	literarture (self-study)	
Conditions: Basic knowledge on materials science	e, in particular composite materials	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	e Testing	
see module description Contents: see module description		

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0168: Modern Metal Modern Metallic Materials	llic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15)		<u> </u>
Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	roforming, spinforming	
Titanium alloys		
Magnesium alloys		
Superalloys		
Intermetallics, high entropy alloys		
 aquire the skill to derive alloy pro 	ctual metallic alloys and their properties perties from physical metallurgy principl and to explain appropriate metallic mate	-
Remarks:		
Scheduled every second summer sems	ster.	
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	provided materials (self-study) iterarture (self-study)	
Conditions:		
Recommended: Knowledge of physical	I metallurgy and physical chemistry	
Frequency: each summer semester alternating with PHM-0167	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

and polymer-polymer interfaces g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module: 1 semester[s]
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
Bestehen der Modulprüfung Minimal Duration of the Module:
Bestehen der Modulprüfung Minimal Duration of the Module:

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course Language: German Contact Hours: 1

Module MRM-0136: Mechanical (Mechanical Characterization of Materi		6 ECTS/LF
Version 1.1.0 (since SoSe21)		
Person responsible for module: Prof. [Dr. Markus Sause	
Contents:		
The following topics are presented:		
 Introduction to material characte 	rization	
Linear material behaviour		
Non-linear material behaviour		
Material failure		
 Measurement technologies 		
Tensile testing		
 Compression testing 		
Shear testing		
 Other static testing concepts 		
Fracture mechanics		
Assembly testing		
Surface mechanics		
Creep testing		
Fatigue testing		
High-Velocity testing		
Component testing		
Learning Outcomes / Competences The students:	:	
	f materials testing and evaluation of ma	
-	cepts in measurement techniques, and	
Are able to independently acquir	e further knowledge of the scientific to	pic using various forms of information.
Workload:		
Total: 180 h		
80 h studying of course content throug		
20 h studying of course content using		
20 h studying of course content using		
60 h lecture and exercise course (atter	ndance)	
Conditions:		Credit Requirements:
None		Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Cha	racterization of Materials	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Issler, L., & Häfele, H. R. P. (2003). Festigkeitslehre Grundlagen. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-540-73485-7
- Dowling, N. E. (2019). Mechanical Behavior of Materials (4th ed.). Pearson.
- Gross, D., & Seelig, T. (2011). Fracture Mechanics. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-642-19240-1
- J. Schijve. (2008). Fatigue of Structures and Materials (2nd Edition). Springer Science & Business Media.
- Sadd, M. H. (2018). Continuum Mechanics Modeling of Material Behavior. In Continuum Mechanics Modeling of Material Behavior. Elsevier. https://doi.org/10.1016/C2016-0-01495-X

Examination

Mechanical Characterization of Materials

written exam, written exam / length of examination: 90 minutes

Parts of the Module

Part of the Module: Mechanical Characterization of Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Module MRM-0112: Finite elemen phenomena Finite-Elemente-Modellierung von Multi		6 ECTS/LP
Version 2.9.0 (since WS19/20) Person responsible for module: Prof. D Dozenten: Prof. Dr. Sause / Prof. Dr Pe		
Learning Outcomes / Competences: The students		
Learn the use and application of	ethods for modeling and simulation of pl numerical methods for realistic problems principles of a FEM program by using "	5
	IRM and Mathematics. It is intended for n FEM program as it is used in academ	
Workload: Total: 180 h		
Conditions: Recommended: MTH-6110 - Numeriscl Materialwissenschaftler, Physiker und V		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Finite-Elemente-I Mode of Instruction: lecture Lecturers: Prof. Dr. Malte Peter, Prof. I Language: German Contact Hours: 2	Modellierung von Multiphysik-Phänor Dr. Markus Sause	nenen
Contents: The following content will be presen	ted:	
 Basic concepts of FEM progra Generation of meshes Optimization strategies Selection of solver Igorithms Example applications from ele Example applications from the Example applications from co Example applications from flu Coupling of differential equations 	ectrodynamics ermodynamics ntinuum mechanics	omena
Lehr-/Lernmethoden: Slide presentation, classroom discu	ssion	

- Grossmann, C., Roos, H.-G., & Stynes, M. (2007). Numerical Treatment of Partial Differential Equations. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-71584-9
- Eck, C., Garcke, H., & Knabner, P. (2017). Mathematische Modellierung. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-662-54335-1
- Temam, R., & Miranville, A. (2005). Mathematical Modeling in Continuum Mechanics. Cambridge: Cambridge University Press.

Examination

Finite-Elemente-Modellierung von Multiphysik-Phänomenen

written/oral exam / length of examination: 60 minutes

Parts of the Module

Part of the Module: Übung zu Finite-Elemente-Modellierung von Multiphysik-Phänomenen

Mode of Instruction: exercise course

Language: German

Contact Hours: 2

Lehr-/Lernmethoden:

Independent reflection of topics to deepen the lecture content

Module MRM-0126: Ceramic Mat	rix Composites	6 ECTS/LP
Keramische Faserverbundwerkstoffe		
Version 3.0.0 (since WS21/22)		
Person responsible for module: Prof. [DrIng. Dietmar Koch	
Contents: Introduction in ceramic matrix cc Basics of processing of technica Processing chain of ceramic ma Processing and properties of cer Principal mechanisms of reinford Properties of CMC Application of CMC	l ceramics trix composites (CMC) from raw materia ramic fibers	als to product
 The students have the competer describe their specific properties The students know the Weibull s The students know how to describe The students get the knowledge according material for specific approximation 	a provided materials (self-study)	ers and ceramic matrix composites and th distribution per and matrix sites and are able to choose the
Conditions: Recommended: basic knowledge of m		Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Keramische Fas Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	erverbundwerkstoffe	
see description of module		
Contents: see description of module		

- N.P. Bansal, J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology. John Wiley & Sons, Inc., 2015.
- W. Krenkel, Ceramic Matrix Composites. Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- K. K. Chawla, Composite Materials 3rd ed., Springer, 2012
- T. Ohji, M. Singh, Engineered Ceramics: Current Status and Future Prospects, ISBN: 978-1-119-10042-3, 2015

Assigned Courses:

Keramische Faserverbundwerkstoffe (lecture)

Examination

Keramische Faserverbundwerkstoffe

written exam, written exam / length of examination: 60 minutes

Parts of the Module

Part of the Module: Übung Keramische Faserverbundwerkstoffe

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see description of module

Assigned Courses:

Keramische Faserverbundwerkstoffe (lecture)

Module MRM-0142: Complex 3D Structures and Components from 2D Materials Complex 3D Structures and Components from 2D Materials	6 ECTS/LP
Version 1.0.0 Person responsible for module: Prof. DrIng. Suelen Barg	
Contents: Introduction:	
 Complex Materials in Nature Motivations in assembling 2D Materials in 3D with an overview of their de applications (from energy to aerospace) 	emands for future technological
Nano and 2D Materials:	
 Introduction to nano and 2D Materials Scaling laws and the evolution of properties with size Graphene structure, properties, and characterization 2D Transition Metal Carbides (MXenes) 2D Materials synthesis routes: top-down and bottom-up approaches 	
From 2D to 3D:	
 Motivations, Challenges, and opportunities Colloidal processing routes with 2D Materials: Principles of wet processing Self-assembly, templating, and additive manufacturing (AM) routes Extrusion-based AM with 2D Materials Functionalities and Applications Aerogel supports for functional composite development 3D architectures for energy storage 	ng
Learning Outcomes / Competences: By completing this unit, the students should be able to:	
Knowledge and understanding:	
 Define the classes of nanomaterials depending on their dimensionality. Identify the different families of 2D materials beyond graphene, including (TMDs), carbides and/or nitrides (MXenes). Summarize top-down and bottom-up synthesis strategies towards 2D ma Select appropriate syntheses routes for a given application based on pro of the approach. Explain the basic principles, advantages and disadvantages of innovative 2D materials-based 3D structures. 	iterials. perty requirements and cost efficiency
Intellectual skills:	
 Solve problems involving the evolution of properties with size in nanomat spherical cluster approximation models. Evaluate the effect of microstructure and composition to develop new ma efficiency using real examples from the literature. 	
Transferable and practical skills:	
Evaluate English language scientific content in the specialist literature.Apply analytical methods to solve problems.	
Workload:	

Conditions: materials science basic knowledge		Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Complex 3D Structures and Components from 2D Materials

Mode of Instruction: lecture

Lecturers: Prof. Dr.-Ing. Suelen Barg

Language: English

Contact Hours: 4

Learning Outcome:

See description of the module

Contents:

See description of the module

Literature:

- Sulabha K Kulkarni, Nanotechnology: principles and Practice, 3rd Ed., 2015 (Springer-Verlag GmbH).
- Leonard W. T. Ng, Guohua Hu, Richard C. T. Howe, Xiaoxi Zhu, Zongyin Yang, Printing of Graphene and Related 2D Materials, in: Technology, Formulation and Applications. 1st ed., 2019, (Springer-Verlag GmbH)
- Research papers presented in class

Examination

Complex 3D Structures and Components from 2D Materials

written exam, written exam / length of examination: 1 hours

Module PHM-0252: Optical Exci Optical Excitations in Materials	tations in Materials	6 ECTS/LP
Version 1.9.0 (since SoSe20)		
Person responsible for module: Prof.	Dr. Joachim Deisenhofer	
Contents: 1. Classical Light-Matter Interation in	Solids:	
 Classical electromagnetic wave reflection, transmission, absorp Anisotropic media, birefringenc Classical Drude-Lorentz oscilla 	e, longitudinal solutions	
2. Quantum Aspects of Light-Matter in	nteraction	
 qm approach to absorption and Electric-dipole and magnetic-di Rabi-oscillations and the need A glimpse of non-linear optics 	•••	Golden Rule
3. Exitations in different material class	ses	
 Optical properties of semiconduct Absorption and Luminescence, Optoelectronics, detectors, ligh Quantum confined structures: tructures: tructures: tructures 	t emitting devices	
 The students have detailed known competence to choose adequate material classes. The students have a basic under the students are able apply the students apply the students are able apply the students are abl	s: edge of the fundamental concepts of light- wledge of classical models of light-propage te spectroscopic techniques for measuring erstanding of quantum aspects of optical ese concepts to understand and analyse o skills to search for scientific literature and	pation and absorption and get the g the optical properties of different processes in different materials. ptical properties of different materials.
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using 60 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions:	ynamics, atomic and solid state physics.	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Optical Excitations in Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

ECTS Credits: 6.0

Literature:

- 1. Mark Fox, Optical Properties of Solids, Oxford Master Series
- 2. Mark Fox, Quantum Optics: An Introduction, Oxford Master Series
- 3. David B. Tanner, Optical Effects in Solids, Cambridge University Press
- 4. Y. Toyozawa, Optical Processes in Solids, Cambridge University Press

Assigned Courses:

Optical Excitations in Materials (lecture)

Examination

Optical Excitations in Materials

written exam / length of examination: 90 minutes

measurementsDynamic processes in dielectric	. Peter Lunkenheimer ties, broadband dielectric spectroscopy, i	
 Experimental techniques: quanti measurements Dynamic processes in dielectric 	ties, broadband dielectric spectroscopy,	
 Charge transport: hopping conductivity: conductivity modevices Maxwell-Wagner relaxations: equivaterials Electroceramics: Materials, Propriaterials Learning Outcomes / Competences 	materials: relaxation processes, phenom ad matter: liquids, glasses, plastic crystals uctivity, universal dielectric response nechanism, dielectric properties, advance uivalent-circuits, applications (supercapa perties (relaxor ferroelectric, ferroelectric, ectromagnetic wave propagation and hav	enological models ad electrolytes for energy-storage citors), colossal-dielectric-constant antiferroelectric and multiferroic),
spectrum of dielectric phenomena. The n a broad frequency range. They have critically assess experimental results o	ey are able to analyze materials requirem the competence to select materials for o	nents and to interpret dielectric spectra
Remarks: Elective compulsory module		
Workload: Fotal: 180 h 50 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 30 h studying of course content throug	provided materials (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		

Mode of Instruction: lecture

Lecturers: PD Dr. Stephan Krohns, PD Dr. Peter Lunkenheimer Language: English / German

- F. Kremer and A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002).
- F. Kremer and A. Loidl (eds.), The scaling of relaxation processes (Springer, Cham, 2018).
- A.K. Jonscher, Dielectric Relaxations in Solids (Chelsea Dielectrics Press, London, 1983).
- C.J.F. Böttcher and P. Bordewijk, Theory of electric polarisation Vol II (Elsevier, Amsterdam, 1973).
- S.R. Elliott, Physics of Amorphous Materials (Longman, London, 1990)
- A.J.Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003)
- R. Waser, U. Böttger, S. Tiedke, Polar Oxides: Properties, Characterization, and Imaging (Wiley, 2005)

Examination

Dielectric Materials Dielectric Materials

presentation / length of examination: 45 minutes

Examination Prerequisites:

Dielectric Materials

Module PHM-0297: Method Course Method Course: Methods in Bioanalytic	-	8 ECTS/LP
Version 1.0.0 (since WS22/23) Person responsible for module: Prof. D	r. Janina Bahnemann	
Contents:		
- Basic concepts of instrumental analyti	ics, sensor technology, validation, quality	y assurance
- Biological basics for sensor design an	d sample components	
- Biological markers, biomaterials and t	argets: bioreceptors: antibodies, enzyme	es, aptamers, cells, nanoparticles
- Sensor principles / transducers: optica	al, thermal, electrochemical, electromech	nanical, colorimetric
- Sensor materials (e.g., silicon, gold, p	lastics, polymers)	
- Immobilization of bioreceptors on sen	sor materials	
- Lateral flow assays, Point-of-Care dia	gnostics	
- Carbohydrate and lipid analysis: Chro	matographic methods (HPLC, GC, DC, I	MS)
- Amino acid analytics: HPLC, fluoresce	ence spectroscopy	
- Nucleic acid analytics: PCR method, s	sequencing, electrophoresis, microarrays	5
- Protein analytics: Chromatography, electrophoresis, spectroscopy, Bradford assay		
- Cell analytics: Flow cytometry and mic	croscopy	
- Concepts and materials for sensor de	velopment and optimization:	
e.g., Microfluidics, additive manufa	acturing, nanoporous materials, nanopar	ticles, amplifiers
 Learning Outcomes / Competences: Students will be able to use acquire 	red analytical expertise to adequately de	scribe and correlate basic principles of
bioanalysis and their applications.		
• Students will be able to transfer ad practical course.	cquired knowledge from the lecture to pr	actical applications in the experimental
 Students will demonstrate self-cor small groups. 	npetence of work organization as well as	s social competence by working in
	eins using various analytical methods, to cally evaluate, comprehensibly record in	-
Remarks: ELECTIVE COMPULSORY MODULE		
Number of students will be limited to 9.		
Workload:		
Total: 240 h		
Conditions: keine / none		Credit Requirements: Practical work and written report
Frequency: nach Bedarf WS und	Recommended Semester:	Minimal Duration of the Module:
SoSe	1 4.	1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: none	

Parts of th	e Module
Part of the	Module: Method Course: Methods in Bioanalytics
Language	: German / English
Contact H	ours: 2
Literature:	
• Lo	ttspeich and Engels: "Bioanalytik", Spektrum Akademischer Verlag, ISBN: 3-8274-2942-0
• Lo Biology	ttspeich and Engels: "Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular "
• 02	zkan et al.: "Biosensors: Fundamentals, Emerging Technologies, and Application", CRC Press
	oon: "Introduction to Biosensors: From Electric Circuits to Immunosensors", Springer Verlag, ISBN: 19801360
• T	hieman: "Introduction to Biotechnology", Pearson, ISBN: 978-1292261775
Assigned	Courses:
Method Co	ourse: Methods in Bioanalytics
	Module: Method Course: Methods in Bioanalytics (Pratical Course) : German / English ours: 4
Assigned	Courses:
Method Co	ourse: Methods in Bioanalytics
Examinati	on

Method Course: Methods in Bioanalytics

report, Practical work and written report on practical work

Module PHM-0298: Method cou	Irse: From macroscopic to	8 ECTS/LP
microscopic ferroic properties	-	
Method course: From macroscopic to	o microscopic ferroic properties	
Version 1.0.0 (since WS22/23) Person responsible for module: Prof.	Dr. Johnán Kázomárki	
ferromagnetism, which play a key rol course will teach the students to und scale and, after having a fundamenta	earn the basic concepts of ferroic properti e in materials science and engineering, at erstand and perform experiments on ferro al understanding, microscopic measureme anning complex measurement procedures	t cryogenic temperatures. This method bic materials first, on a macroscopic ents. Therefore, the students will be
Magnetic Properties will be investiga	ted via:	
 Magnetization measurements Susceptibility measurements Magnetic force microscopy (Million) 	FM)	
Electric Properties will be investigate	d via:	
 Linear and non-linear dielectric SEM / EDX Polarization measurements Conductive atomic force micro 	: spectroscopy scopy (cAFM) / piezo force microscopy (P	PFM)
 perform experiments at cryoge trained in planning and perform learn to evaluate and analyze to combining knowledge of macro and magnetic properties 	ning complex experiments	roscopic data to fully understand electric
Remarks: ELECTIVE COMPULSORY MODUL	ES	
Workload: Total: 240 h		
Conditions: Recommended: basic knowledge in a	solid state physics and ferroic properties	Credit Requirements: Participation in laboratory course and oral examination.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method course Language: English Contact Hours: 2	e: From macroscopic to microscopic fe	erroic properties

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- V. K. Wadhawan, Introduction to ferroic materials (CRC Press)
- S. Kalinin, A. Gruverman, Scanning Probe Microscopy Electrical and electromechanical phenomena at the nanoscale (Springer)
- A. K. Tagantsev, Domains in Ferroic Crystals and Thin films (Springer)

Assigned Courses:

Method course: From macroscopic to microscopic ferroic properties (lecture)

Part of the Module: Method course: From macroscopic to microscopic ferroic properties (Practical Course) Language: English

Contact Hours: 4

Assigned Courses:

Method course: From macroscopic to microscopic ferroic properties (lecture)

Examination

Method course: From macroscopic to microscopic ferroic properties

oral exam / length of examination: 45 minutes

Module PHM-0166: Carbon-base (Carboterials) Carbon-based functional Materials (Ca		6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Contents: 1. Introduction to carbon allotropes and	d porous carbon materials [4]	
2. Physical properties of fullerenes, ca	rbon nanotubes and graphene [4]	
3. Solid state NMR spectroscopy of ca	rbon materials [4]	
4. Metal carbides [4]		
5. Carbon thin films and coatings [4]		
6. Manufacturing and processing techr	nology of carbon fibres [4]	
7. Carbon-fibre reinforced polymer cor	nposites [4]	
8. Carbon-fibre reinforced aluminium (Metal Matrix Composites, MMC) [4]	
9. Energy storage in carbon materials	[4]	
10. Carbon-based materials for opto-e	lectronics [4]	
11. Quantum transport phenomena rel	ating to carbon materials [4]	
12. a) Manipulating heat flow with carb	oon-based electronic analogs: phononic	s in place of electronics [2]
12. b) Carbon-based spintronics [2]		
13. Fabrication and processing of carb	on-based nanostructures [4]	
Learning Outcomes / Competences: The students:		
-	,	
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atter	literarture (self-study) h exercises / case studies (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

written exam / length of examination: 120 minutes

Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

Module PHM-0174: Theoretical C	oncepts and Simulation	6 ECTS/LP
Theoretical Concepts and Simulation		
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D		
 Basic numerical methods: interpolation Ordinary and Partial Differential Molecular dynamics Monte Carlo simulations 	Equations (e.g., diffusion equation, Schr	
Learning Outcomes / Competences: The students:		
 know the principal concepts of the relevant in material science, are able to solve simple problem have the expertise to find the numerical results, Integrated acquirement of soft set 	-	e codes and to present the results, n problem and to judge the quality and
Remarks: Links to software related to the course: http://www.bloodshed.net/ http://www.cplusplus.com/doc/tur http://www.cygwin.com/ http://xmd.sourceforge.net/down http://www.rasmol.org/ http://felt.sourceforge.net/	torial/	
Workload: Total: 180 h 60 h lecture and exercise course (atter 80 h studying of course content throug 20 h studying of course content using l	h exercises / case studies (self-study) iterarture (self-study)	
Conditions: Recommended: basic knowledge of qu and numerical methods as well as of a	-	Credit Requirements: project work in small groups, including a written summary of the results (ca. 10-20 pages) as well as an oral presentation
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Examination Prerequisites:

Theoretical Concepts and Simulation

4	regulations of the study program	
Contact Hours:	Repeat Exams Permitted: according to the examination	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
addition, knowledge of molecular	· ·	
	nrough exercises / case studies (self-study) sing provided materials (self-study)	
organic semiconductor devhave acquired skills for the functioning of components,and have the competence to the c	nd electronic properties of organic semicondu ices, classification of the materials taking into acco o comprehend and attend to current problems oft skills: practicing technical English, working	unt their specific features in the s in the s in the s in the field of organic electronics.
 Organic metals Light-emitting diodes Solar cells Field-effect transistors 		
 Materials and preparation Structural properties Electronic structure Optical and electrical prope 	rties	
Basic concepts and applications of Introduction	of organic semiconductors	
Person responsible for module: P	rof. Dr. Wolfgang Brütting	
Organic Semiconductors Version 1.3.0 (since WS09/10)		
Organia Somiconductore	Semiconductors	6 ECTS/LF

Language: English

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting: Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)
- S.R. Forrest: Organic Electronics (Oxford Univ. Press)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: every 3rd semester

Contact Hours: 1

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

Module PHM-0066: Supercond Superconductivity	luctivity	6 ECTS/LP
Version 1.0.0 (since WS11/12)		
Person responsible for module: Pro	f. Dr. Philipp Gegenwart	
Phenomenological ThermodyGinzburg-Landau TheoryMicroscopic Theories	f the Superconducting State, an Overvie namics and Electrodynamics of the SC the Nature of the Superconducting State luctors	
Learning Outcomes / Competenc	es:	
The students:		
 Special attention will be drawn the superconducting state, to For self-studies a comprehent 	mportant technical applications of superon in to the basic concepts of the main phen explain the experimental observations. sive list of further reading will be supplied	omeno-logical and microscopic theories of
Workload: Total: 180 h 60 h lecture and exercise course (a 80 h studying of course content thro 20 h studying of course content usir 20 h studying of course content usir	ough exercises / case studies (self-study) ng literarture (self-study)	
Conditions: Physik IV – Solid-state physic Theoretical physics I-III 	S	
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc Mode of Instruction: lecture Language: English Contact Hours: 4	tivity	
Learning Outcome: see module description		
Contents:		

see module description

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Assigned Courses:

Superconductivity (lecture)

*(online/digital) *

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Module PHM-0060: Low Tempe Low Temperature Physics	erature Physics	6 ECTS/L
Version 1.1.0 (since WS09/10) Person responsible for module: Prof	. Dr. Philipp Gegenwart	
Contents:		_
 Introduction 		
 Properties of matter at low ten 	nperatures	
 Cryoliquids and superfluidity 		
Cryogenic engineering		
Thermometry		
Quantum transport, criticality a	and entanglement in matter	
Learning Outcomes / Competence The students:	25:	
have acquired the theoretical I	natter at low temperatures and the corres knowledge to perform low-temperature n Ily investigate current problems in low-te	neasurements,
Total: 180 h 20 h studying of course content usin 20 h studying of course content usin 60 h lecture and exercise course (at 80 h studying of course content thro	g literarture (self-study)	
Conditions: Physik IV - Solid-state physics		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	
Part of the Module: Low Temperat	ture Physics	

see module description

Contents:

- · Introduction (temperature scale, history of low temperature physics)
- Properties of matter at low temperatures (specific heat, thermal expansion, electrical resistance, thermal conductivity)
- Cryoliquids and superfluidity (nitrogen, hydrogen, 4-He and 3-He: phase diagrams, superfluidity)
- Cryogenic engineering (liquefaction of gases, helium cryostats, dilution refrigerator, adiabatic demagnetization, further techniques)
- · Thermometry (primary and secondary thermometers at different temperature regimes)
- Quantum Matter (quantum Transport, Quantum phase transitions, Quantum spin liquids)

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Low Temperature Physics

Module PHM-0114: Porous Functional Materials	ctional Materials	6 ECTS/LF
Version 1.0.0 (since SS11 to WS22/23 Person responsible for module: Prof. I		
Contents:		
Overview and historical develop	oments	
 Structural families of porous frame 	meworks	
 Synthesis strategies 		
 Adsorption and diffusion 		
 Thermal analysis methods 		
 Catalytic properties 		
 Advanced applications and current 	ent trends	
 broaden their capabilities to cha and thermal analysis, 	vledge about design principles and synt	thesis of porous functional materials, /ith special emphasis laid upon sorption
 Integrated acquirement of soft s 	kills	
Remarks:		
Γhis module and the exams for this	module will be offered in WS 2022/2	3 for the last time !
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte	endance)	
30 h studying of course content throug	gh exercises / case studies (self-study)	
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using	provided materials (self-study)	
Conditions:		Credit Requirements:
	hemistry	Credit Requirements: one written examination, 90 min
Conditions:	hemistry Recommended Semester: from 1.	-
Conditions: participation in the course Materials C	Recommended Semester:	one written examination, 90 min Minimal Duration of the Module:
Conditions: participation in the course Materials C Frequency: each winter semester	Recommended Semester: from 1.	one written examination, 90 min Minimal Duration of the Module:
Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted:	one written examination, 90 min Minimal Duration of the Module:
Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	one written examination, 90 min Minimal Duration of the Module:
Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours:	Recommended Semester: from 1.Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:
Conditions: participation in the course Materials C Frequency: each winter semester Contact Hours: 4 Parts of the Module	Recommended Semester: from 1.Repeat Exams Permitted: according to the examination regulations of the study program	one written examination, 90 min Minimal Duration of the Module:

Contact Hours: 4

Contents:

see module description

Literature:

- Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)
- · selected reviews and journal articles cited on the slides

Assigned Courses:

Porous Functional Materials (lecture)

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0068: Spintronics Spintronics		6 ECTS/LP
Version 1.7.0 (since SoSe14)		
Person responsible for module: PD Dr.	German Hammerl	
 from Emergence of spin textures such Torques acting on the local magneffect and spin-orbit torques) Switching Motion of spin textures, 1D mode 	as domain walls and bubbles/skyrm netization (magnetic field torque, curr el and Thiele equation ects and their utility in electrical reado	ent in-plane spin-transfer torque, spin-Hal
Learning Outcomes / Competences:	·	
The students:		
 know the fundamental interaction structures, 	ns in magnetic materials, the basic sp	pintronic effects, and the related device
 are able to design device compo acquire scientific skills in finding 	rder to achieve demanding propertie nents to achieve spin polarization, and understanding current literature materials and material combinations	dealing with spintronic devices and
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 80 h studying of course content throug 20 h studying of course content using l	provided materials (self-study) h exercises / case studies (self-study	()
Conditions:		
none Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	
Part of the Module: Spintronics Mode of Instruction: lecture Language: English Contact Hours: 3		

Learning Outcome:

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Spintronics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Spintronics

Module PHM-0057: Physics of Th Physics of Thin Films	nin Films	6 ECTS/LP
Version 1.6.0 (since WS09/10) Person responsible for module: PD Dr.	German Hammerl	
Contents: • Thin film growth: basics, thermoo • Thin film growth techniques: vac	dynamic considerations, surface kinetics, uum technology, physical vapor deposition thin films: in-sit methods, ex-situ method	on, chemical vapor deposition
Learning Outcomes / Competences: The students:		
 have the competence to deal wit are able to choose the right subs application conditions, aquire skills of combining the var applications, and 	ods of thin film technology and material p h current problems in the field of thin film strates and thin film materials for epitaxia rious technologies for growing thin layers rch for scientific literature, unterstand tec perimental results.	technology largely autonomous, I thin film growth to achieve desired with respect to their properties and
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using I 60 h lecture and exercise course (atter 20 h studying of course content using p	iterarture (self-study) ndance)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Thin Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	Films	
Contents: see module description		

- H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987)
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001)
- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

Examination

Physics of Thin Films

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics of Thin Films

Module PHM-0056: Ion-Solid Ion-Solid Interaction	d Interaction	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: a	apl. Prof. Dr. Helmut Karl	
 Fundamentals of atomic conclusion models) Ion-induced modification or 	ntific and technological application, principles) ollision processes (scattering, cross-sections, f solids (integrated circuit fabrication with emp nage, ion milling and etching (RIE), sputtering	energy loss models, potentials in binary ohasis on ion induced phenomena, ion
Learning Outcomes / Compete The students:	nces:	_
	te physical models for specific technological ork extensively autonomous on problems con	
	using provided materials (self-study) hrough exercises / case studies (self-study)	
Conditions: Basic Courses in Physics I–IV S	olid State Physics, Nuclear Physics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Ion-Solid In Mode of Instruction: lecture Language: English Contact Hours: 3	nteraction	
Learning Outcome: see module description		
Contents: see module description		

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Ion-Solid Interaction

written exam / length of examination: 90 minutes

Examination Prerequisites:

Ion-Solid Interaction

Module PHM-0069: Applied Mag Applied Magnetic Materials and Meth		6 ECTS/LP
Version 1.1.0 (since WS14/15) Person responsible for module: Prof.	Dr. Manfred Albrecht	
Contents: • Basics of magnetism • Ferrimagnets, permanent magr • Magnetic nanoparticles • Superparamagnetism • Exchange bias effect • Magnetoresistance, sensors • Experimental methods (e.g. Mö		
 acquire the ability to describe q mathematical descriptions of ph Integrated acquirement of soft s 	rms and concepts of magnetism, of basic physical relations and their app ualitative observations, interpret quant hysical effects of chosen magnetic mate skills: autonomous working with special	itative measurements, and develop erial systems.
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throu 60 h lecture and exercise course (atte	l literarture (self-study) gh exercises / case studies (self-study)	
Conditions: Basics in solid state physics		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Applied Magne Mode of Instruction: lecture Language: English Contact Hours: 3	tic Materials and Methods	
Learning Outcome:		

Learning Outcome:

see module description

Contents:

see module description

Literature:

Stephan Bundell, Magnetism in Condensed Matter, Oxford University Press, ISBN: 0-19-850591-4 (Pbk)

J.M.C. Coey, Magnetism and Magnetic Materials, Cambridge University Press, ISBN: 978-0-521-81614-4 (hardback)

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Applied Magnetic Materials and Methods

	te Spectroscopy with Synchrotron	6 ECTS/LP
Radiation and Neutrons Solid State Spectroscopy with Synchrotron Radiation and Neutrons		
Version 1.2.0 (since WS09/10)		
Person responsible for module: Pr	of. Dr. Christine Kuntscher	
Contents:		
 Electromagnetic radiation: d Spectral analysis of electron Excitations in the solid state Infrared spectroscopy Ellipsometry Photoemission spectroscopy X-ray absorption spectroscop Neutrons: Sources, detector 	у	meter, interferometer [2]
9. Neutron scattering		
Learning Outcomes / Competen The students:	ices:	
 have acquired the skills of formulating a mathematical-physical ansatz in spectroscopy and can apply these in the field of solid state spectroscopy, have the competence to deal with current problems in solid state spectroscopy autonomously, and are able to judge proper measurement methods for application. Integrated acquirement of soft skills. 		
60 h lecture and exercise course (sing provided materials (self-study)	
Conditions:	()	
basic knowledge in solid-state phy	/sics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State S Mode of Instruction: lecture Language: English Contact Hours: 3	Spectroscopy with Synchrotron Radiation	and Neutrons
Learning Outcome: see module description		

Contents:

see module description

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

	s of the Module		
4		according to the examination regulations of the study program	
	uency: each summer semester	Recommended Semester: from 2. Repeat Exams Permitted:	Minimal Duration of the Module: 1 semester[s]
Mec	ditions: hanics, Thermodynamics, Statistic	1	
Tota 60 h 20 h 80 h 20 h	studying of course content using I	provided materials (self-study) h exercises / case studies (self-study)	
•	interdisciplinary thinking and wor	king.	
	processing and interpretation of		
	self-dependent working with Eng		
The	students improve the key compete		
•	tor independent processing of pr	oblems and dealing with current literation	ure.
The	students obtain skills		
	egies, membranes and proteins		
	· · ·	y, microfluidics, radiation biophysics,	nanobiotechnology, sequencing
The	students know: basic terms, concepts and pheno	mena of hiological physics	
Leai	ning Outcomes / Competences:		
•	DNA and proteins Enabling technologies Microfluidics Radiation Biophysics		
	tents: Transcription and translation Membranes		
Pers	ion 1.1.0 (since SoSe22) on responsible for module: Dr. Ste terhausen, Christoph, Dr.	fan Thalhammer	

Language: English

Contact Hours: 3

Learning Outcome:

See module description.

Contents:

- Radiation Biophysics
 - Radiation sources
 - Interaction of radiation with biological matter
 - Radiation protection principles
 - Low dose radiation
 - $\circ~$ LNT model in radiation biophysics
- Microfluidics
 - Life at Low Reynolds Numbers
 - The Navier-Stokes Equation
 - Low Reynolds Numbers The Stokes Equation
 - Breaking the Symmetry
- Membranes
 - Thermodynamics and Fluctuations
 - Thermodynamics of Interfaces
 - Phase Transitions 2 state model
 - · Lipid membranes and biological membranes, membrane elasticity
- Membranal transport
 - Random walk, friction and diffusion
 - Transmembranal ionic transport and ion channels
 - Electrophysiology of cells
 - Neuronal Dynamics

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- lecture notes

Part of the Module: Biophysics and Biomaterials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

See module description.

Examination

Biophysics and Biomaterials written exam / length of examination: 90 minutes Examination Prerequisites:

Riophysics and Riomatorials

Biophysics and Biomaterials

M. J.J. DUM ACCO 11					
Module PHM-0059: Magnetis Magnetism	m	6 ECTS/LP			
Version 1.0.0 (since WS09/10)					
Person responsible for module: Di	r. Hans-Albrecht Krug von Nidda				
Contents:	ŭ				
 History, basics 					
-	al and quantum phenomenology				
Exchange interaction and mean-field theory					
 Magnetic anisotropy and magnetoelastic effects Thermodynamics of magnetic systems and applications 					
					Magnetic domains and domain walls
 Magnetization processes an 	nd micro magnetic treatment				
AC susceptibility and ESR					
Spintransport / spintronics	·				
Recent problems of magnet					
Learning Outcomes / Competen The students:	ICES:				
 know the basic properties and phenomena of magnetic materials and the most important methods and concepts for their description, like mean-field theory, exchange interactions and micro magnetic models, have the ability to classify different magnetic phenomena and to apply the corresponding models for their interpretation, and have the competence independently to treat fundamental and typical topics and problems of magnetism. Integrated acquirement of soft skills. 					
Total: 180 h					
20 h studying of course content us	rough exercises / case studies (self-study) sing literarture (self-study)				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us	rough exercises / case studies (self-study)				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions:	rough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study)				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics	Minimal Duration of the Module:			
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions:	rough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study)	Minimal Duration of the Module: 1 semester[s]			
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually	rough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1.				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c	rough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted:				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours:	rough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1.				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours:	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				
80 h studying of course content th 20 h studying of course content us 20 h studying of course content us 20 h studying of course content us Conditions: basics of solid-state physics and c Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	arough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study) quantum mechanics Recommended Semester: from 1. Repeat Exams Permitted: according to the examination				

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices	3,	
Physics and Technology of Semicondu	ictor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: apl. Pr	of. Dr. Helmut Karl	
Contents:		
	ors (electronic bandstructure, doping, car	rrier excitations and carrier transport)
 Semiconductor diodes and trans Semiconductor technology 	Istors	
Learning Outcomes / Competences:		
 Basic knowledge of solid-state a excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	nd semiconductor physics such as electr ts (effective mass, quasi-Fermi levels) to describe and understand the operation p v relevant methods and tools in semicono ls: autonomous working with specialist lit y for teamwork, ability to document expe	o describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
60 h lecture and exercise course (atter	ndance)	
Conditions: recommended prerequisites: basic kno physics and quantum mechanics.	wledge in solid state physics, statistical	
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Teo	hnology of Semiconductor Devices	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome: see module description		
Contents:		
see module description		
• -		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur	es / Nanophysics	6 ECTS/LP
Nanostructures / Nanophysics Version 1.2.0 (since WS09/10) Person responsible for module: Prof. D	r. István Kézsmárki	
Contents:		
 Magnetotransport in low-dimensi Optical properties of nanostructu Fabrication and detection technic 	vires and dots, low dimensional electro onal systems, Quantum-Hall-Effect, Q res and their application in modern op ques of nanostructures res (Ferroelectricity, Magnetism, Multi	uantized conductance toelectonic devices, Nanophotonics
 The students have detailed know be applied for novel functional de The students gain competence in nanostructures. The students are able apply thes 	ge of the fundamental concepts in mo	tor structures and how these systems car nd optoelectronics aracterization approaches for specific s in nanophysics.
Total: 180 h 80 h studying of course content througl 20 h studying of course content using l 60 h lecture and exercise course (atter 20 h studying of course content using p	iterarture (self-study) ndance)	
Conditions: recommended prerequisites: basic kno quantum mechanics.	wledge in solid-state physics and	
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Contact Hours: 4	/ Nanophysics	

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics oral exam / length of examination: 30 minutes Examination Prerequisites: Nanostructures / Nanophysics

Module PHM-0054: Chemical Phy	ysics II	6 ECTS/LP			
Chemical Physics II					
Version 1.3.0 (since WS09/10) Person responsible for module: Prof. D	r Welfgeng Scherer				
Person responsible for module. Prof. D PD Dr. Georg Eickerling	n. Woligang Scherei				
Contents:					
Introduction to computational che	emistry				
Hartree-Fock Theory					
DFT in a nutshell					
Prediction of reaction mechanisms					
 calculation of physical and chem 					
Learning Outcomes / Competences:					
The students:					
·	al methods of chemical physics to interpr	ret the electronic structures in			
 molecules and solid-state compo have therefore the competence t 	ounas, o autonomously perform simple quantum	a chamical calculations using Hartroo			
•	eory (DFT) and to interpret the electronic	Ŭ			
materials with regard to their che					
-	ills: ability to specialize in a scientific top	ic and to apply the acquired knowledge			
for solving scientific problems.					
Remarks:					
It is possible for students to do quantur	n chemical calculations autonomously a	nd analyze electronical structures of			
molecules on a computer cluster within	the scope of the tutorial.				
Workload:					
Total: 180 h					
60 h lecture and exercise course (atter					
80 h studying of course content throug 20 h studying of course content using I					
20 h studying of course content using p					
Conditions:	······································				
It is highly recommended to complete t	he module Chemical Physics I first.				
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:			
not in summer term 23	from 2.	1 semester[s]			
Contact Hours:	Repeat Exams Permitted:				
4	according to the examination				
	regulations of the study program				
Parts of the Module					
Part of the Module: Chemical Physic	es II				
Mode of Instruction: lecture					
Language: English					

Learning Outcome:

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

	Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Hana Bunzen	Dr. Dirk Volkmer]
Contents:		
A) Basics of coordination Chemistry		
 Historical development of coordi Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coord Characteristic reactions [3] 	es [2] tal coordination compounds [3]	
 Selected classes of functional mate 	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	lical applications [3]	
Learning Outcomes / Competences: The students	:	
coordination compounds,	rpret UV/vis absorption spectra and to p f coordination chemistry onto topics of n kills.	
Remarks:		
ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	ndance) literarture (self-study) provided materials (self-study)	
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using	ndance) literarture (self-study) provided materials (self-study) h exercises / case studies (self-study)	
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug Conditions: Recommended: The lecture course is	ndance) literarture (self-study) provided materials (self-study) h exercises / case studies (self-study)	Minimal Duration of the Module: 1 semester[s]

Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Module PHM-0113: Advanced Sc Advanced Solid State Materials	lid State Materials	6 ECTS/LP
Advanced Solid State Materials	_	
Version 1.0.0 (since WS10/11) Person responsible for module: Prof. D	Nr. Honning Hönno	
Person responsible for module: Prof. D		
Contents: • Repitition of concepts • Novel silicate-analogous materia • Luminescent materials • Pigments • Heterogeneous catalysis	ls	
 acquire skills to predict the prope 	ations between composition, structures erties of chemical compounds, based of potential of functional materials for fut operties of these materials.	•
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using l 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 3	State Materials	
Learning Outcome: see module description		
Contents: see module description		
Literature: • A. West, Solid State Chemist • L. Smart, E. Moore, Solid Sta		

Scripts Solid State Chemistry and Chemistry I and II

Part of the Module: Advanced Solid State Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0218: Novel Meth Spectroscopy	ods in Solid State NMR	6 ECTS/LI
Novel Methods in Solid State NMR Spectroscopy		
Version 1.0.0 (since SoSe17) Person responsible for module: Prof	. Dr. Leo van Wüllen	
Contents:		
The physical basis of nuclear magne	etic resonance	
Pulsed NMR methods; Fourier Trans	sform NMR	
Internal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to	obtain specific information about the stru	cture and dynamics of solid materials
Recent highlights of the application	of modern solid state NMR in materials s	cience
Workload:		
Total: 180 h		
Conditions: none		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Method Mode of Instruction: lecture Language: German Contact Hours: 3	s in Solid State NMR Spectroscopy	
Assigned Courses:		
Novel Methods in Solid State NMF	Spectroscopy (lecture)	
Novel methods in Solid State Nmr		
Part of the Module: Novel Method Mode of Instruction: exercise cours Language: German Contact Hours: 1	s in Solid State NMR Spectroscopy (T se	utorial)
Literature: 1. M. H. Levitt, Spin Dynamics, J	y, Wiley 2001.	ishina Ltd., 2004.
2. H. Günther, NMR spectroscop 3. M.Duer, Introduction to Solid-S	blate runn speetroscopy, blackwen rub	
3. M.Duer, Introduction to Solid-S		

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents:	
Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences:	
 The students: know the the fundamental basics, mechanics, types of corrosion proce explanation obtain the skill to understand typical electrochemical quantification of a aquire the competence to assess corrosion phenomena from typical of 	corrosion processes.
Remarks: Scheduled every second summer semster.	
Workload:	
Total: 180 h 60 h lecture and exercise course (attendance)	

120 h studying of course content using provided materials (self-study)				
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry		Credit Requirements: written exam (90 min)		
Frequency: each summer semester alternating with PHM-0168	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]		
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program			

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Frequency: each winter semester

Contact Hours: 3

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each winter semester

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materi	the second se	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
The following topics are presented:		
Introduction to composite mate	rials	
 Applications of composite mate 	rials	
 Mechanical testing 		
 Thermophysical testing 		
Nondestructive testing		
Learning Outcomes / Competences	5: 	
The students:		
are introduced to important con		omposite materials. d material models applied to composites. opic using various forms of information.
Workload:		
Total: 180 h		
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (atte	-	
80 h studying of course content throu	gh exercises / case studies (self-study	()
Conditions: Recommended: basic knowledge in r composite materials	naterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	,	1

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Module PHM-0163: Fiber Reinfo Materials Properties Fiber Reinforced Composites: Proces	rced Composites: Processing and sing and Materials Properties	6 ECTS/LP
Version 1.2.0 (since SoSe15) Person responsible for module: Dr. Ju	udith Moosburger-Will	
• • • •	es of fibers and their precursor materials es of commonly used polymeric and cera gies	mic matrix materials
Learning Outcomes / Competences The students:	3:	
 know the basics of production te know the application areas of co have the competence to explain have the competence to choose 	• • •	matrices, and fiber-reinforced materials. and composites. tion relevant conditions.
ELECTIVE COMPULSORY MODULE	E	_
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	provided materials (self-study)	
Conditions: Recommended: basic knowledge in morganic chemistry	naterials science, basic lectures in	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction		6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D Dr Ing. Johannes Schilp	r. Siegfried Horn	
Contents:		
The following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanisms Tension, shear and bending more Hydrostatics Hydrodynamics Strength of materials and solid measureme Mechanical design (including king) 	nechanics nt	
Learning Outcomes / Competences: The students understand and are able		d materials science to:
Engineering applicationsMechanical testingInstrumentationMechanical design		
Workload: Total: 180 h		
Conditions: none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Engi Mode of Instruction: lecture Language: English Contact Hours: 3	neering	
Part of the Module: Mechanical Engi Mode of Instruction: exercise course Language: English Contact Hours: 1	neering (Tutorial)	

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

Module MRM-0052: Functional	Polymers	6 ECTS/LF
/ersion 1.0.0 (since SoSe15)		
Person responsible for module: PD I	Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer scienc 	e	
 Elastomers and elastoplastic r 	naterials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting polyme 	rs	
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
Polymers with second order no	on-linear optical properties	
Polymeric catalysts		
Self-healing polymers		
 Polymers in bio sciences> 		
Learning Outcomes / Competence The students learn how polymeric m mechanical, magnetic, electric, optic	aterials can be designed and applied to ac	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload:	aterials can be designed and applied to ac	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h	aterials can be designed and applied to ac al, thermal or chemical impact.	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content thro	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 30 h studying of course content throu 20 h studying of course content usin	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throu 20 h studying of course content usin	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content thro 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content thro 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II)	t in a smart manner on an external
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throu 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II) lymerchemie und -physik)	
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 30 h studying of course content thro 20 h studying of course content usin 50 h lecture and exercise course (at Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po Frequency: irregular will not be	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II)	Minimal Duration of the Module:
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throus 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po Frequency: irregular will not be offered in the next time	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II) lymerchemie und -physik) Recommended Semester: from 2.	
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throi 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po Frequency: irregular will not be offered in the next time Contact Hours:	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II) lymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:	Minimal Duration of the Module:
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throus 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po Frequency: irregular will not be offered in the next time	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II) lymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
The students learn how polymeric m mechanical, magnetic, electric, optic Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content throi 20 h studying of course content usin 60 h lecture and exercise course (att Conditions: Recommended: Attendance to PHM and MRM-0050 (Grundlagen der Po Frequency: irregular will not be offered in the next time Contact Hours:	aterials can be designed and applied to ac al, thermal or chemical impact. g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) tendance) -0035 (Chemie I), PHM-0036 (Chemie II) lymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:	Minimal Duration of the Module:

Part of the Module: Functional Polymers

Mode of Instruction: lecture

Language: English Contact Hours: 3

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each summer semester

Contact Hours: 1

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0168: Modern Metal Modern Metallic Materials	llic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15)		<u> </u>
Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hydr 	roforming, spinforming	
Titanium alloys		
Magnesium alloys		
Superalloys		
Intermetallics, high entropy alloys		
 aquire the skill to derive alloy pro 	ctual metallic alloys and their properties perties from physical metallurgy principl and to explain appropriate metallic mate	-
Remarks:		
Scheduled every second summer sems	ster.	
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using p 20 h studying of course content using li 80 h studying of course content through	provided materials (self-study) iterarture (self-study)	
Conditions:		
Recommended: Knowledge of physical	I metallurgy and physical chemistry	
Frequency: each summer semester alternating with PHM-0167	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

and polymer-polymer interfaces g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module: 1 semester[s]
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
g various forms of information. Credit Requirements: Bestehen der Modulprüfung Minimal Duration of the Module:
Bestehen der Modulprüfung Minimal Duration of the Module:
Bestehen der Modulprüfung Minimal Duration of the Module:

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course Language: German Contact Hours: 1

Non-Destructive Testing	ictive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof.	. Dr. Markus Sause	
Contents:		
Introduction to nondestructive	testing methods	
 Visual inspection 		
Ultrasonic testing		
Guided wave testing		
Acoustic emission analysisThermography		
Radiography		
 Eddy current testing 		
Specialized nondestructive me	ethods	
Learning Outcomes / Competence	es:	
The students		
 acquire knowledge in the field 	of nondestructive evaluation of material	S,
	ncepts in nondestructive measurement t	-
	uire further knowledge of the scientific to	pic using various forms of information.
Integrated acquirement of soft	SKIIIS	
Workload: Total: 180 h		
60 h lecture and exercise course (at	tendance)	
20 h studying of course content usin	-	
20 h studying of source contact		
20 In studying or course content usin	g provided materials (self-study)	
	g provided materials (self-study) ugh exercises / case studies (self-study)	·
80 h studying of course content through	ugh exercises / case studies (self-study)	
80 h studying of course content thron Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science	ugh exercises / case studies (self-study)	
80 h studying of course content throu Conditions:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content throu Conditions: Basic knowledge on materials science Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destruction Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	ugh exercises / case studies (self-study) ce, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0203: Physics of C Physics of Cells	ells	6 ECTS/L
Version 1.3.0 (since SoSe22) Person responsible for module: Dr. Cł	nristoph Westerhausen	
 Thermodynamics of proteins an Physical methods and technique Cell adhesion – interplay of specific 	es for studying cells cific, universal and elastic forces of tissue - macromolecules of the extra c s of the cell as a biomaterial	
Learning Outcomes / Competences		
The students		
properties.know the basic functionality of nknow physical descriptions of fu	of human cells, as building blocks of livin nechanical and optical methods to study ndamental biological processes and pro questions and define model systems to	living cells perties of biomaterials.
The students improve the key compet	ences:	
 self-dependent working with Eng processing of experimental data interdisciplinary thinking and wo 		
Workload:		
60 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study)	
Conditions: Mechanics, Thermodynamics		Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Cells Mode of Instruction: lecture Language: English / German Contact Hours: 2	5	
Learning Outcome: see module description		

Contents: see module description Literature: • Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010. • Heimburg, Thomas. Thermal Biophysics of Membranes. Wiley-VCH, 2007 • Nelson, Philip. Biological physics. New York: WH Freeman, 2004. • Boal, D. Mechanics of the Cell. Cambridge University Press, 2012 · Lecture notes **Assigned Courses:** Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description **Contents:** see module description Literature: see module description Assigned Courses:

Physics of Cells (Tutorial) (exercise course)

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

Module PHM-0117: Surfaces and Surfaces and Interfaces	d Interfaces	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.	Dr. Manfred Albrecht	
Contents: Introduction		
 The importance of surfaces and 	linterfaces	
Some basic facts from solid state phy	sics	
 Crystal lattice and reciprocal lat Electronic structure of solids Lattice dynamics 	tice	
Physics at surfaces and interfaces		
 Structure of ideal and real surfa Relaxation and reconstruction Transport (diffusion, electronic) Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid state Interface dominated materials (not structure) 	on interfaces te surfaces (catalysis)	
Methods to study chemical composition	on and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scanning Auger – electron – spectroscopy Photo electron spectroscopy 		
Learning Outcomes / Competences The students:	::	
surfaces and interfaces,acquire the skill to solve probler interface physics,	ns of fundamental research and applie certain problems autonomously based o	
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atte	provided materials (self-study) gh exercises / case studies (self-study)	,
Conditions:		
The module "Physics IV - Solid State Materials Science program should be		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module Part of the Module: Surfaces and Interfaces Mode of Instruction: lecture Language: English Frequency: annually Contact Hours: 3 Learning Outcome: see module description Contents: see module description Literature: • Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH) • Lüth: Surfaces and Interfaces of Solids (Springer) · Zangwill: Physics at Surfaces (Cambridge) • Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland) • Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner) • Briggs, Seah: Practical Surface Analysis I und II (Wiley) **Assigned Courses:** Surfaces and Interfaces (lecture) *(online/digital) * Part of the Module: Surfaces and Interfaces (Tutorial) Mode of Instruction: exercise course Language: English Frequency: annually Contact Hours: 1 Assigned Courses: Surfaces and Interfaces (Tutorial) (exercise course) *(online/digital) *

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

Module PHM-0053: Chemical Ph Chemical Physics I	nysics I	6 ECTS/LP
Version 1.0.0 (since WS09/10)		I
Person responsible for module: Prof.	Dr. Wolfgang Scherer	
Contents: Basics of quantum chemical me Molecular symmetry and group The electronical structure of tra 	theory	
Learning Outcomes / Competences The students:	3:	
 know the basics of the extended 	d-Hückel-method and the density function	nal theory,
spectroscopy, andare able to interpret and predict complexes.	/, e gained through consideration of symme the basical geometric, electronical and r skills: ability to specialize in a scientific to	nagnetical properties of transition metal
Remarks:		
	calculations autonomously and analyze e he tutorial.	lectronical structures of molecules on a
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using 60 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions: It is recommended to complete the exand FP17 (Raman-spectroscopy) of t Fortgeschrittenenpraktikum".		
Frequency: each winter semester no in winter term 22/23	t Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Phys Mode of Instruction: lecture Language: English Contact Hours: 3	ics I	
Learning Outcome:		

see module description

Contents:

- · Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Module PHM-0217: Advanced X- Techniques Advanced X-ray and Neutron Diffractic		6 ECTS/L
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. E PD Dr. Georg Eickerling		
Contents:		
 The failure of the standard <i>Indep</i> Beyond the standard model: The How to obtain and analyze expe 	endent Atom <i>M</i> odel (IAM) in X-ray diffra e multipolar model rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences: The students:		
neutron diffraction dataknow the basics of the <i>Quantum</i>	on the reconstruction of accurate electr Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atter	provided materials (self-study) h exercises / case studies (self-study) iterarture (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	•	·
Part of the Module: Advanced X-ray Mode of Instruction: lecture Language: English	and Neutron Diffraction Techniques	

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

and Materials Scientists	Course: Electronics for Physicists	8 ECTS/LI
Method Course: Electronics for Ph	nysicists and Materials Scientists	
Version 2.0.0 (since SoSe22)		
Person responsible for module: Ar	ndreas Horner	
Contents:		
1. Basics in electronic and electron	ctrical engineering	
2. Quadrupole theory		
3. Analog technique, transistor	and opamp circuits	
4. Boolean algebra and logic		
5. Digital electronics and calcu		
 6. Microprocessors and Netwo 7. Basics in Electronic 	IKS	
 Basics in Electronic 8. Implementation of transistor 	6	
 Operational amplifiers 	3	
10. Digital electronics		
11. Practical circuit arrangemen	t	
Learning Outcomes / Competen		· · · · · · · · · · · · · · · · · · ·
The students:		
	epts and phenomena of electronic and elec	ctrical engineering for the use in the
laboratory,	sign, measuring and control technology, a	palog and digital electronics
-	ent working on circuit problems. They can d	
Remarks: ELECTIVE COMPULSORY MOD	111 E	
Attendance in the Method Course	e: Electronics for Physicists and Materia	
Attendance in the Method Course		
Attendance in the Method Course AND lecture) excludes credit poir Workload:	e: Electronics for Physicists and Materia	
Attendance in the Method Course AND lecture) excludes credit poir Workload: Total: 240 h	e: Electronics for Physicists and Materia ats for the lecture Electronics for Physicis	
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u	e: Electronics for Physicists and Materia	
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance)	e: Electronics for Physicists and Materia ats for the lecture Electronics for Physicis using provided materials (self-study)	
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study)	
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study)	sts and Materials Scientists.
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions:	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study)	Sts and Materials Scientists.
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study)	sts and Materials Scientists.
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 50 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions: none	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study)	Sts and Materials Scientists.
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 50 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions: none	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study) attendance)	Sts and Materials Scientists. Credit Requirements: written report (one per group)
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions:	e: Electronics for Physicists and Materia its for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study) attendance) Recommended Semester:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 60 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions: none Frequency: each semester	e: Electronics for Physicists and Materia ints for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study) attendance) Recommended Semester: from 1.	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 50 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions: none Frequency: each semester Contact Hours:	e: Electronics for Physicists and Materia ints for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study) attendance) Recommended Semester: from 1. Repeat Exams Permitted:	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
Attendance in the Method Course AND lecture) excludes credit poin Workload: Total: 240 h 140 h studying of course content u 50 h lecture (attendance) 10 h preparation of written term pa 30 h internship / practical course (Conditions: none Frequency: each semester Contact Hours:	e: Electronics for Physicists and Materia ints for the lecture Electronics for Physicis using provided materials (self-study) apers (self-study) attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:

Mode of Instruction: lecture

Language: English

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

written exam / length of examination: 90 minutes

Module PHM-0148: Method Co Method Course: Optical Properties	ourse: Optical Properties of Solids	8 ECTS/LP
Version 1.4.0 (since SoSe15) Person responsible for module: Pro	f. Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, F	resnel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and GenzeSources and detectors	l interferometer	
Terahertz Time Domain spectrosco	ру	
Generation of pulsed THz radGated detection, Austin switch		
Elementary excitations in solid mate	erials	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
 The students know about function these spectroscopic methods The students obtain the comp The students have the skills to the the s	principles of far-infrared spectroscopy and damental optical excitations in condensed	matter materials that can be studied by eriments,
Remarks:		
Workload: Total: 240 h 30 h studying of course content usir	bugh exercises / case studies (self-study) ng literarture (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in electrodynamics and optics	solid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

and Characterization Method Course: Porous Materials - S	rse: Porous Materials - Synthesis	8 ECTS/LF
Version 1.0.0 (since SoSe15 to WS21 Person responsible for module: Prof.	-	,
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRI Thermal analysis (TGA) Adsorption and diffusion (BET, Catalytic properties (GC/MS, TR 	pore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	3:	
use modern solid state preparaemploy analytical methods dedi	tion techniques (e.g. hydrothermal, solvo icated to porous materials.	thermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULI	E	
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throu 20 h studying of course content using	tendance) gh exercises / case studies (self-study) l literarture (self-study)	
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	Credit Requirements: written report (editing time 3 weeks) - written exam
Workload: Total: 240 h 120 h internship / practical course (att	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	written report (editing time 3 weeks) +
Workload: Total: 240 h 120 h internship / practical course (att 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using Conditions:	tendance) gh exercises / case studies (self-study) l literarture (self-study) l provided materials (self-study)	written report (editing time 3 weeks) + written exam Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course Language: English

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0147: Method Cour	se: Electron Microscopy	8 ECTS/LP
Method Course: Electron Microscopy		
Version 1.3.0 (since SoSe15) Person responsible for module: Prof. D	Pr. Ferdinand Haider	
Contents:	,	
Scanning electron microscopy (SEM)		
 Electron optical components Detectors EDX, EBSD 		
Transmission electron microscopy (TE	M)	
 Diffraction Contrast mechanisms High resolution EM Scanning TEM Analytical TEM Aberration correction 		
Learning Outcomes / Competences: The students:		
 are able to operate SEM and TE are able to characterize materials Aquire the competence to decide aquire the competence to assess 	basics, which are afterwards deepend M on a basic level s using different electron microscopy about a technique feasible for a cert s EM images, also regarding artefacts ature and to formulate a scientific repo	techniques ain problem.
ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 90 h lecture and exercise course (atter 150 h studying of course content using	-	
Conditions: Recommended: knowledge of solid-sta	te physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report per group)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Electron Microscopy	

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Module PHM-0149: Method Course: Methods in Biophysic		8 ECTS/LI
Version 2.0.0 (since SoSe22) Person responsible for module: Dr. Ch	ristoph Westerhausen	
Contents: Unit Membrane biophysics		
 Preparation of synthetic lipid me Size, fluorescence and phase tra Nanoparticle uptake synthetic m 	ansition characterization of lipid memb	ranes
Unit microfluidic		
Microfluidic systemsFabrication of microfluidic systemCalculation of microfluidic problem		
Unit live cell experiments		
Cell cultureCell couting and separation usin	g microfluidics	
Unit analysis		
Learning Outcomes / Competences The students:		
technologies of microfluidic man	ic and biophysical phenomena on sma ipulation and analysis systems, immun-histochemical staining procedu oscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h		
Conditions: Attendance of the lecture "Biophysics	and Biomaterials"	Credit Requirements: 1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English	Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics report

Examination Prerequisites:

Method Course: Methods in Biophysics

· · ·	conducting Materials	
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [
Contents: Methods of growth and characterizatio	on:	
Sample preparation (bulk materials an		
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning to magnetic susceptibility, electrica specific heat 		
Learning Outcomes / Competences	:	
	e collected data, are taught to work on easurement results and their interpreta	
Workload: Total: 240 h 90 h lecture and exercise course (atter 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using	provided materials (self-study) gh exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in so mechanics	olid state physics and quantum	Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: ଚ	Repeat Exams Permitted: according to the examination regulations of the study program	

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cou Spectroscopy Method Course: Modern Solid State I		8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Prof.	Dr. Leo van Wüllen	
Contents:		
Physical foundations of NMR spectros		
Internal interactions in NMR spectros	сору	
 Chemical shift interaction Dipole interaction and Quadrupolar interaction 		
Magic Angle Spinning techniques		
Modern applications of NMR in mater	ials science	
Experimental work at the Solid-State	NMR spectrometers, computer-aided an	alysis and interpretation of acquired data
Learning Outcomes / Competences The students:	3:	
gain basic practical knowledge	vsical foundations of modern Solid-State of operating a solid-state NMR spectron erform, and analyze modern solid-state aterials.	neter,
Remarks: ELECTIVE COMPULSORY MODULI		
Workload: Total: 240 h 30 h studying of course content using 90 h studying of course content throug 30 h studying of course content using 90 h lecture and exercise course (atte	gh exercises / case studies (self-study) provided materials (self-study)	
Conditions: The attendance of the lecture "NOVE SPECTROSCOPY" is highly recomm		Credit Requirements: Bestehen der Modulprüfung
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: seminar Language: English	: Modern Solid State NMR Spectrosco	ору

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0171: Method Court		8 ECTS/LP
Method Course: Coordination Materia	/S 	
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Dr. Hana Bunzen		
Contents:		
1. Synthesis of metal complexes:		
2. Analytical characterization of me	etal complexes (thermal analysis, UV/v	s spectroscopy, IR spectroscopy, X-ray
diffraction)		
3. Material composition and stabilit	ty studies	
4. Functional coordination material	s (spin-crossover materials, oxygen-ca	rrying materials)
Learning Outcomes / Competences	:	
The students will learn how to:		
 prepare transition metal complex 	xes employing modern preparation tecl	nniques (e.g. microwave synthesis), inert
synthesis conditions (Schlenk te		
	bunds by selected analytical techniques	З,
develop functional coordination	materials based on organic / inorganic	hybrid compounds,
employ X-ray diffraction method	s for structural analysis.	
Remarks:		
ELECTIVE COMPULSORY MODULE		
Workload:		
Total: 240 h		
20 h studying of course content using		
	when a version of a second studies (solf study)	
	gh exercises / case studies (self-study)	
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using 120 h lecture and exercise course (att	literarture (self-study)	
20 h studying of course content using 120 h lecture and exercise course (att Conditions:	literarture (self-study)	Credit Requirements:
20 h studying of course content using 120 h lecture and exercise course (att	literarture (self-study)	Credit Requirements: written report (protocols)
20 h studying of course content using 120 h lecture and exercise course (att Conditions:	literarture (self-study)	-
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none	literarture (self-study) endance)	written report (protocols)
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none	literarture (self-study) endance) Recommended Semester: from 2.	written report (protocols) Minimal Duration of the Module:
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester	literarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted:	written report (protocols) Minimal Duration of the Module:
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours:	literarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	written report (protocols) Minimal Duration of the Module:
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours:	literarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted:	written report (protocols) Minimal Duration of the Module:
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours:	literarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	written report (protocols) Minimal Duration of the Module:
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module	literarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory course	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course Mode of Instruction: seminar	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course Mode of Instruction: seminar Language: English	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course Mode of Instruction: seminar	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course Mode of Instruction: seminar Language: English Contact Hours: 2 Literature:	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]
20 h studying of course content using 120 h lecture and exercise course (att Conditions: none Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course Mode of Instruction: laboratory cours Language: English Contact Hours: 4 Part of the Module: Method Course Mode of Instruction: seminar Language: English Contact Hours: 2	Iterarture (self-study) endance) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program : Coordination Materials (Practical C Se	written report (protocols) Minimal Duration of the Module: 1 semester[s]

Examination Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites: Method Course: Coordination Materials (Seminar)

Module PHM-0172: Method Cour Materials Method Course: Functional Silicate-an	se: Functional Silicate-analogous alogous Materials	8 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	Dr. Henning Höppe	1
Contents: Synthesis and characterization of func	tional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phospho Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F1	T-IR), thermal analysis
Learning Outcomes / Competences: The students will know how to:		
autoclave reactions, use of silica	aration techniques (e.g. solid state reaction ampoules), heres (e.g. reducing, inert conditions), as from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using l 20 h studying of course content using l 80 h studying of course content throug	provided materials (self-study) literarture (self-study)	
Conditions: Recommended: attendance to the lect	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
		4

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Examination

Method Course: Functional Silicate-analogous Materials seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectro		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. I	Dr. Christine Kuntscher	J
Contents: Electrodynamics of solids		
Maxwell equations and electromagnet	ic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicond	ductors (Drude)	
ii. Interband absorptions in semiconduiii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	S	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences		
The students		
Learn about the basics of the light inte	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method (-	8 ECTS/LP
Method Course: Thermal Analysis	; 	
Version 1.0.0 (since WS16/17) Person responsible for module: P	rof Dr. Ferdinand Haider	
Dr. Robert Horny		
Contents:		
Methods of thermal analysis:		
- Differential Scanning Calorimetry	/: DSC, DTA	
- Thermo-gravimetric Analysis: TC		
- Dilatometry: DIL		
- Dynamic-mechanical Analysis: [DMA	
-Rheology: RHEO		
Advanced Methods:		
- Modulated Differential Scanning	Calorimetry: MDSC	
- Evolved Gas Analysis: EGA (GC	MS, FTIR)	
Learning Outcomes / Competer	nces:	
The students:		
 get to know the basic principation 	bles of thermal analysis	
 learn about fundamental the 	ermal processes in condensed matter ,e.g.	phase transitions and relaxation
processes (metals, polymer	-	
	complex experiments and the usage of adv	anced measurement techniques
learn how to evaluate and a	-	
	lata artefacts leading to misinterpretation	
Remarks:		
Workload:		
Total: 240 h		
90 h lecture and exercise course	(attendance)	
	rough exercises / case studies (self-study))
30 h studying of course content us		
30 h studying of course content us	sing provided materials (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge	in solid-state physics	regular participation, oral presentation
		(10 min), written report
Frequency: irregular	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Method Cou	Irse: Thermal Analysis	
Mode of Instruction: lecture	-	

Language: English

Frequency: each winter semester

Literature:

- Differential scanning calorimetry, Höhne, Hemminger, Flammersheim, H., Springer, 2003
- Practical Gas Chromatography, Dettmer-Wilde, Engewald, Springer, 2014
- Das Rheologie-Handbuch, Mezger, Vincentz, 2010

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course Language: English Frequency: each winter semester Contact Hours: 4

Examination

Method Course: Thermal Analysis report

Module PHM-0221: Method Method Course: X-ray Diffraction	Course: X-ray Diffraction Techniques	8 ECTS/LP
Version 1.3.0 (since WS15/16) Person responsible for module: PD Dr. Georg Eickerling	Prof. Dr. Wolfgang Scherer	
Contents: Subjects of the practical training of X-ray diffraction techniques:	and the accompanying lecture are the theore	tical basics and the practical application
Data collection and reduction ted	chniques	
Symmetry and space group dete	ermination	
Structural refinements:		
 The Rietveld method Difference Fourier synthesis 		
Structure determination:		
Interpretation of structural refine	ment results	
Errors and Pitfalls: twinning and	disorder	
employing X-ray diffractionhave the skill to perform up	nder guidance phase-analyses and X-ray struchands-on the structure-property relationships	cture determinations
30 h studying of course content	through exercises / case studies (self-study)	
Conditions: none		
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: X-ray Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. W. Massa, Crystal structure determination, Berlin, Springer, 2016.

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

ecommended: module "Plasmaphysik und Fusionsforschung" general exami			
Version 2.2.0 (since WS17/18) Person responsible for module: apl. Prof. DrIng. Ursel Fantz Contents: • Fundamentals of plasma material interactions (winter term) • High heat load components in nuclear fusion devices (summer term) .earning Outcomes / Competences: • Knowledge: The students know the fundamental plasma material interaction processes in nuclear fusion research in light of the technological boundary conditions and challenges. • Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. • Competencies: The students are competent in elaborating current topics of plasma material interaction and approximation of complex processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: he two lectures of this module can be followed in an arbitrary order. Thus, the module can be winter term. Vorkload: total: 180 h 00 h studying of course content using provided materials (self-study) i0 h studying of course content using literarture (self-study) i0 h studying of course content using provided materials (self-study) i0 h studying of course content using interactions forschung" general examination regulations of the study program icrequency: annually Recommended Semester: form 2. Conditions: Repeat		ial Interaction	6 ECTS/LP
Person responsible for module: apl. Prof. DrIng. Ursel Fantz			
Contents: Fundamentals of plasma material interactions (winter term) High heat load components in nuclear fusion devices (summer term) Learning Outcomes / Competences: Knowledge: The students know the fundamental plasma material interaction processes in nuclear fusion research in light of the technological boundary conditions and challenges. Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. Competencies: The students are competent in elaborating current topics of plasma material interaction and approximation of complex processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: The two lectures of this module can be followed in an arbitrary order. Thus, the module can be followed in an arbitrary order. Thus, the module can be winter term. Vorkload: Total: 180 h 50 h studying of course content using provided materials (self-study) 50 h lecture (attendance) Conditions: ecommended: module "Plasmaphysik und Fusionsforschung" general examited:			
 Fundamentals of plasma material interactions (winter term) High heat load components in nuclear fusion devices (summer term) earning Outcomes / Competences: Knowledge: The students know the fundamental plasma material interaction processes is nuclear fusion research in light of the technological boundary conditions and challenges. Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. Competencies: The students are competent in elaborating current topics of plasma material interactive, abstraction and approximation of complex processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: The two lectures of this module can be followed in an arbitrary order. Thus, the module can be winter term. Vorkload: Total: 180 h Total: 180 h Total: 180 h Total: 180 h The two lectures content using provided materials (self-study) Total: 180 h Total: 180 h	· · · · · ·	of. DrIng. Ursel Fantz	
High heat load components in nuclear fusion devices (summer term) earning Outcomes / Competences: Knowledge: The students know the fundamental plasma material interaction processes in nuclear fusion research in light of the technological boundary conditions and challenges. Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. Competencies: The students are competent in elaborating current topics of plasma material interaction processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: The two lectures of this module can be followed in an arbitrary order. Thus, the module can be winter term. Vorkload: Total: 180 h Studying of course content using provided materials (self-study) Studying of course content using provided materials (self-study) Studying of course content using literarture (self-study) Studying of course content using literarture (self-study) Studying of course content using provided materials (self-study) Studying of course content using provided materials (self-study) Studying of course content using literarture (self-study) Studying of course content using literarture (self-study) Studying of course content using provided materials (self-study) Stu			
earning Outcomes / Competences: • Knowledge: The students know the fundamental plasma material interaction processes : nuclear fusion research in light of the technological boundary conditions and challenges. • Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. • Competencies: The students are competent in elaborating current topics of plasma material interaction processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: • The two lectures of this module can be followed in an arbitrary order. Thus, the module can be followed in an arbitrary order. Thus, the module can be viniter term. Vorkload: • Total 180 h • 00 h studying of course content using provided materials (self-study) • 01 hecture (attendance) Conditions: ecommended: module "Plasmaphysik und Fusionsforschung" general exami from 2. Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Parts of the Module: Part of the Module: Parts of the Module: Fundamentals of plasma material interactions Adde of Instruction: lecture anguage:			
Knowledge: The students know the fundamental plasma material interaction processes a nuclear fusion research in light of the technological boundary conditions and challenges. Skills: The students are proficient in a differentiated analysis of complex systems, based examples of power exhaust in fusion devices. Competencies: The students are competent in elaborating current topics of plasma material integrated achievement of key qualifications: Acquirement of interdisciplinary knowledge English literature, abstraction and approximation of complex processes using numerical oriented thinking and ability to contemplate about experimental results. Remarks: The two lectures of this module can be followed in an arbitrary order. Thus, the modu	High heat load components in nu High heat load components in nu	clear fusion devices (summer term)	
Vorkload: Total: 180 h 50 h studying of course content using provided materials (self-study) 50 h studying of course content using literarture (self-study) 50 h lecture (attendance) Conditions: ecommended: module "Plasmaphysik und Fusionsforschung" general examination frequency: annually Recommended Semester: from 2. Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Fundamentals of plasma material interactions Mode of Instruction: lecture .anguage: English Frequency: each winter semester	 Knowledge: The students know to nuclear fusion research in light of Skills: The students are proficien examples of power exhaust in fusion Competencies: The students are Integrated achievement of key que English literature, abstraction and oriented thinking and ability to contain harks: 	the technological boundary conditions a tin a differentiated analysis of complex s sion devices. competent in elaborating current topics ualifications: Acquirement of interdisciplin d approximation of complex processes u ntemplate about experimental results.	and challenges. systems, based on learning from of plasma material interaction. hary knowledge, independent work with sing numerical models, application-
ecommended: module "Plasmaphysik und Fusionsforschung" general exami Frequency: annually Recommended Semester: from 2. Minimal Dura 2 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program 2 Parts of the Module Parts of the Module: Fundamentals of plasma material interactions Mode of Instruction: lecture anguage: English Frequency: each winter semester Frequency: each winter semester Frequency: each winter semester	al: 180 h studying of course content using p studying of course content using I		
Frequency: annually Recommended Semester: from 2. Minimal Dura 2 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program 2 Parts of the Module Parts of the Module: Fundamentals of plasma material interactions 0 Part of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Parts of the Module: Fundamentals of plasma material interactions 0 0 Part of the Module: Fundamentals of plasma material interactions 0 0 Part of the Module: Fundamentals of plasma material interactions 0 0 Part of the Module: Fundamentals of plasma material interactions 0 0 Part of the Module: Fundamentals of plasma material interactions 0 0 Part of the Module: Fundamentals of plasma material interactions 0	ditions:		Credit Requirements:
from 2. 2 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Parts of the Module: Fundamentals of plasma material interactions Mode of Instruction: lecture anguage: English Frequency: each winter semester	mmended: module "Plasmaphysik	und Fusionsforschung"	general examination for entire module
according to the examination regulations of the study program Parts of the Module Part of the Module: Fundamentals of plasma material interactions Mode of Instruction: lecture anguage: English Frequency: each winter semester	juency: annually		Minimal Duration of the Module: 2 semester[s]
Parts of the Module Part of the Module: Fundamentals of plasma material interactions Mode of Instruction: lecture Language: English Frequency: each winter semester	tact Hours:	Repeat Exams Permitted:	
Part of the Module: Fundamentals of plasma material interactions Node of Instruction: lecture anguage: English Frequency: each winter semester			
Aode of Instruction: lecture .anguage: English Frequency: each winter semester	s of the Module		
anguage: English Frequency: each winter semester	of the Module: Fundamentals o	plasma material interactions	
requency: each winter semester	le of Instruction: lecture		
Contact Hours: 2			
, viitavi 11 vii 5. 2	tact Hours: 2		

Learning Outcome:

see description of module

Contents:

Fundamental plasma boundary physics, erosion processes: physical sputtering, chemical erosion, radiation induced sublimation, arcs, experimental observation of surface processes in plasmas, methods for characterizing surfaces, coating techniques, hydrogen retention, surface modification by plasmas.

Literature:

- P. Stangeby: The plasma boundary of magnetic fusion devices (IOP, 2000)
- R. Clark, D. Reiter (Eds.): Nuclear Fusion Research, Understanding Plasma-Surface Interactions (Springer, 2005)
- O. Auciello, D. L. Flamm (Eds.): Plasma Diagnostics, Volume 2: Surface Analysis and Interactions (Plasma-Materials Interactions) (Academic Press, 1989)
- M. Turnyanskiy et al.: European roadmap to the realization of fusion energy: Mission for solution on heatexhaust systems (Fusion Engineering and Design, 2015)

Assigned Courses:

Fundamentals of plasma material interactions (lecture)

**

Part of the Module: High heat load components in nuclear fusion devices

Mode of Instruction: lecture

Language: English

Frequency: each summer semester

Contact Hours: 2

Learning Outcome:

see description of module

Contents:

Interdependency of material choices and fusion performance, material choices and technologies for power exhaust in a fusion power plant, migration of materials in a fusion plasma, diagnostics for plasma material interaction in fusion devices (in situ and post mortem), numerical methods for studying plasma material interaction.

Literature:

- P. Stangeby: The plasma boundary of magnetic fusion devices (IOP, 2000)
- R. Clark, D. Reiter (Eds.): Nuclear Fusion Research, Understanding Plasma-Surface Interactions (Springer, 2005)
- M. Turnyanskiy et al.: European roadmap to the realization of fusion energy: Mission for solution on heatexhaust systems, Fusion Engineering and Design (2015)
- V. A. Evtikhin et al.: Lithium divertor concept and results of supporting experiments, Plasma Phys. Control. Fusion 44, 955 (2002)
- T. Hirai et al.: ITER tungsten divertor design development and qualification program, Fusion Eng. Des. 88, 1798 (2013)
- A. R. Raffray et al.: High heat flux components Readiness to proceed from near term fusion systems to power plants, Fusion Eng. Des. 85, 93 (2010)

Examination

Plasma Material Interaction

oral exam / length of examination: 30 minutes

Module PHM-0234: 2D Materials 2D Materials		6 ECTS/LP
Version 1.0.1 (since SoSe18 to WS21	/22)	
Person responsible for module: Prof. I	-	
Contents:		
Two-dimensional materials: graphene	to emerging new materials, such as trans	sition metal dichalcogenides
1. Fabrication		
2. Optical, electronic and vibration		
3. Applications in advanced function	onal devices	
Learning Outcomes / Competences	:	
	olid state materials and their properties.	
	n and nanofabrication methods for 2D ma	
 Understand and explain and diff 2D materials. 	erentiate between suitable optical and si	tructural characterization methods for
 4. Understand and explain phonor 	properties of 2D materials	
	o quantum transport phenomena such as	s the quantum Hall effect in graphene
	ion, excitonic and spin properties of trans	
7. Understand and explain and dis	cuss applications of 2D materials and the	ir heterostructures for electronic,
optoelectronic, spintronics devic	es and solar energy converstion.	
Workload:		
Total: 180 h		
	h exercises / case studies (self-study)	
60 h lecture (attendance)20 h studying of course content using	litorartura (calf study)	
20 h studying of course content using		
Conditions:		
recommended prerequisites: basic kn	owledge in solid-state physics and	
quantum mechanics.		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: 2D Materials		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Contact Hours: 4 ECTS Credits: 6.0		
ECTS Credits: 6.0 Learning Outcome:		
ECTS Credits: 6.0		
ECTS Credits: 6.0 Learning Outcome:		

Examination 2D Materials oral exam / length of examination: 30 minutes Examination Prerequisites: 2D Materials

Module PHM-0224: Method Cour Simulation	se: Theoretical Concepts and	8 ECTS/LF
Method Course: Theoretical Concepts	and Simulation	
Version 1.0.0 (since WS15/16) Person responsible for module: Prof. D	r. Liviu Chioncel	
Contents:	ods (computational algorithms) for clas	sical and quantum problems. Python as ill be discussed:
Monte-Carlo integration, stochas	tic optimization, inverse problems nection between classical and quantum	
The students are able to present		
Remarks: The number of students will be limited	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	s (self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Requir in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Materials Scientists	ctronics for Physicists and	6 ECTS/LP
Analog Electronics for Physicists and	d Materials Scientists	
Version 1.2.0 (since WS15/16)		
Person responsible for module: Andr	eas Hörner	
Contents:		
1. Basics in electronic and electri	cal engineering	
2. Quadrupole theory		
3. Electronic Networks		
4. Semiconductor Devices		
5. Implementation of transistors		
6. Operational amplifiers		
7. Optoelectronic Devices		
8. Measurement Devices		
Learning Outcomes / Competence	s:	
The students:		
 have skills in easy circuit designation 	n, measuring and control technology, a working on circuit problems. They can d	
Workload:		
Total: 180 h		
20 h studying of course content using		
20 h studying of course content using		
80 h studying of course content throu	ugh exercises / case studies (self-study)	
60 h lecture and exercise course (att		,
60 h lecture and exercise course (att Conditions:		,
Conditions:		
Conditions:		Minimal Duration of the Module: 1 semester[s]
Conditions: none Frequency: each winter semester	endance) Recommended Semester:	Minimal Duration of the Module:
``````````````````````````````````````	endance)	Minimal Duration of the Module:
Conditions: none Frequency: each winter semester Contact Hours:	Recommended Semester: Repeat Exams Permitted:	Minimal Duration of the Module:
Conditions: none Frequency: each winter semester Contact Hours:	endance)         Recommended Semester:         Repeat Exams Permitted:         according to the examination	Minimal Duration of the Module:

Mode of Instruction: lecture + exercise Lecturers: Andreas Hörner

Language: English

Contact Hours: 4

ECTS Credits: 6.0

# Assigned Courses:

Analog Electronics for Physicists and Materials Scientists (lecture + exercise)

*(online/digital) *

# Examination

Analog Electronics Analog Electronics for Physicists and Materials Scientists

written exam / length of examination: 90 minutes

# Examination Prerequisites:

Analog Electronics for Physicists and Materials Scientists

Materials Scientists Digital Electronics for Physicists and I	ronics for Physicists and Materials Scientists	6 ECTS/LP
Version 1.3.0 (since WS15/16) Person responsible for module: Andre	eas Hörner	
<ol> <li>Contents:</li> <li>Boolean algebra and logic gates</li> <li>Digital electronics and calculation</li> <li>Converters (Analog – Digital, Distance)</li> <li>Principle of digital memory and</li> <li>Microprocessors and Networks</li> </ol>	on of digital circuits igital – Analog) communication,	
Learning Outcomes / Competences The students:	3:	
have skills in easy circuit design	and phenomena of electronic and elect n, measuring and control technology and working on circuit problems. They develo	digital electronics,
Total: 180 h 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	literarture (self-study)	
Conditions: none Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
none	Recommended Semester:         Repeat Exams Permitted:         according to the examination         regulations of the study program	
none Frequency: each summer semester Contact Hours:	Repeat Exams Permitted: according to the examination	

# Digital Electronics Digital Electronics for Physicists and Materials Scientists

written exam / length of examination: 90 minutes

Module PHM-0228: Symmetry concepts and their applications in solid state physics and materials science Symmetry concepts and their applications in solid state physics and materials science	6 ECTS/LP
Version 1.0.0 (since WS18/19)	J
Person responsible for module: Prof. Dr. István Kézsmárki	
Deisenhofer, Joachim, Dr.	
Contents:	
The topical outline of the course is as follows:	
Introduction and common examples	
o Motivating examples	
o Polar and axial vectors and tensors	
o Spatial and temporal symmetries and charge conjugation	
o Symmetries of measurable quantities and fields	
o Symmetries of physical laws (classical and quantum)	
o Conservation laws (linear and angular momentum, energy, etc.)	
o Symmetry of measurement configurations (reciprocity, etc.)	
Neumann principle	
o Linear response theory and Onsager relations	
<ul> <li>Applications to vector and tensor quantities: electric and magnetic di ferroelectricity, ferromagnetism, piezoelectricity and magnetoelectricity in crysta media (sound and light)</li> </ul>	•
Symmetry allowed energy terms	
o On the level of classical free energy: Polar, nematic and magnetic or	rder parameters (Landau expansion)
o On the level of Hamiltonians: Molecular vibrations, crystal field poten	itial, magnetic interactions
Symmetry of physical states	
o Spatial inversion and parity eigenstates	
o Discrete translations and the Bloch states	
Spontaneous symmetry breaking upon phase transitions (Landau theory)	)
Outlook: Symmetry guides for skyrmion-host materials, multiferroic comp	ounds and axion insulators
<ul> <li>Learning Outcomes / Competences:</li> <li>The students know the simple use of symmetry concepts to understand p without performing detailed calculations.</li> <li>The students know how to make minimal plans for experiments using the vice versa how to determine the symmetry of materials from the output of</li> <li>The students acquire scientific skills to search for scientific literature and</li> </ul>	symmetry of the studied materials or fexperiments.
Workload:	
Total: 180 h	
60 h (attendance) 60 h exam preparation (self-study)	
S0 h studying of course content (self-study)	

60 h studying of course content (self-study)

<b>Conditions:</b> Background in basic quantum mecha	nics is required.	
Frequency: nach Bedarf WS und SoSe	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science Mode of Instruction: lecture

Lecturers: Prof. Dr. István Kézsmárki

Language: English

Contact Hours: 3

ECTS Credits: 6.0

## Examination

Symmetry concepts and their applications in solid state physics and materials science

oral exam / length of examination: 30 minutes

# Parts of the Module

Part of the Module: Symmetry concepts and their applications in solid state physics and materials science (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Module PHM-0223: Method Course: Tools for Scientific Computing Method Course: Tools for Scientific Computing	8 ECTS/LP
Version 1.5.0 (since SoSe18) Person responsible for module: Prof. Dr. Gert-Ludwig Ingold	
<b>Contents:</b> Important tools for scientific computing are taught in this module and appli students. As far as tools depend on a particular programming language, P discussed include:	
<ul> <li>numerical libraries like NumPy and SciPy</li> <li>visualisation of numerical results</li> <li>use of a version control system like git and its application in collabor</li> <li>testing of code</li> <li>profiling</li> <li>documentation of programs</li> </ul>	ative work
<ul> <li>Learning Outcomes / Competences:</li> <li>The students are capable of solving a physical problem of some cor They are able to visualize the results and to adequately document the The students know examples of numerical libraries and are able to a</li> <li>The students know methods for quality assurance like the use of un They know techniques to identify run-time problems.</li> <li>The students know a distributed version control system and are able out a programming project in a small group.</li> <li>The students understand the relevance of the tools taught in the me</li> </ul>	heir program code. apply them to solve scientific problems. it tests and can apply them to their code. e to use it in a practical problem. bject work. They are able to plan and carry
Remarks: The number of students will be limited to 12.	
Workload: Total: 240 h 60 h studying of course content (self-study) 90 h (attendance) 30 h preparation of presentations (self-study) 60 h preparation of written term papers (self-study)	
Conditions: Knowledge of the programming language Python is expected on the level taught in the module PHM-0243 "Einführung in Prinzipien der Programmierung".	Credit Requirements: The module examination needs to be passed which is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method C Mode of Instruction: lecture Language: English / German Contact Hours: 2	Course: Tools for Scientific Computing	
numerical results. <ul> <li>The students know further profiling and the use</li> </ul>	e numerical libraries NumPy and SciPy and s indamental techniques for the quality assurar of the version control system git. They are ab and the relevance of the tools taught in the m	nce of programs like the use of unit tests, le to adequately document their code.
numerical libraries Nu     graphics with matplot     version control syster     unit tests     profiling     documentation using	lib n Git and workflow for Gitlab/Github	
• A. Scopatz, K. D. Huf	f, <i>Effective Computation in Physics</i> (O'Reilly, ly available at https://gertingold.github.io/tool	-
Part of the Module: Method C Mode of Instruction: internshi Language: English / German Contact Hours: 4	Course: Tools for Scientific Computing (Pr p	ractical Course)
<ul><li>techniques and to vis</li><li>They have gained so able to appropriately</li><li>The students are able</li></ul>	me experience in the application of methods document their programs. e to work in a team and know how to make us	for quality assurance of their code and a

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

### Examination

# Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks

# Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

Module PHM-0285: Method Co Method Course: Computational Bio	purse: Computational Biophysics	8 ECTS/LF
Version 1.0.0 (since SoSe22) Person responsible for module: Pro	f. Dr. Nadine Schwierz-Neumann	
computational methods to study the course, the physics behind biomole mechanics are reviewed. In the sec	teins, nucleic acids, lipids and other biom e structure, dynamics and mechanics of th cular simulations is explained and the ba cond part, different simulation techniques arlo simulations. Subsequently the methor and lipids	nese biomolecules. In the first part of the sic principles of classical and statistical are introduced including molecular
simulations <ul> <li>Students learn to solve typica</li> <li>Students learn how to run and</li> </ul>	nderstanding of the principles, the capaci I biophysical problems analytically and n d analyze computer simulations of biolog ocument and present their simulation res	umerically ical matter
Remarks: Number of students will be limited t	o 15.	
Workload: Total: 240 h 90 h exam preparation (self-study) 60 h studying of course content (se 90 h (attendance)	lf-study)	
Conditions: Knowledge of classical mechanics	on the bachelor level is expected.	Credit Requirements: Passing of the module exam
Frequency: irregular	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
<b>Contact Hours:</b> 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Cour Mode of Instruction: lecture Language: English / German Contact Hours: 2	se: Computational Biophysics	
Contact Hours: 2 Learning Outcome: • Theoretical background o	f biomolecular simulations	

· Computational methods to describe the structure, dynamics and mechanics of biomolecules

## Contents:

- · Introduction to classical mechanics in phase space
- · Probability and information theory
- Connection to statistical mechanics
- Molecular dynamics basics
- Monte Carlo Simulations
- · Forces and force fields in biomolecular systems
- · Simulations in different ensembles
- Calculating macroscopic thermodynamic properties from simulations

### Literature:

- Daniel M. Zuckerman, Statistical Physics of Biomolecules (2010 by Taylor and Francis Inc.)
- Ken Dill and Sarina Bromberg, *Molecular Driving Forces* (2012 by Taylor and Francis Inc; 2nd edition)
- Daan Frenkel and Berend Smit, Understanding Molecular Simulation (2002 by Elsevier, 2nd edition)

### Part of the Module: Method Course: Computational Biophysics (Practical Course)

#### Mode of Instruction: internship

Language: English / German

Contact Hours: 4

#### Learning Outcome:

- Students learn to solve typical biophysical problems analytically and numerically
- · Students learn to run and analyze computer simulations of biological matter
- Students learn to visualization, documentation and presentation of results

#### Contents:

The methods and tools discussed in the lecture will be applied to typical biophysical problems and biological systems. The students work individually or in small teams under supervision. The students present their solutions, document their simulations and summarize their results in a final report.

### Examination

## Method Course: Computational Biophysics

written exam / length of examination: 2 hours

Module MRM-0128: Bioinspired Bioinspired Composites	Composites	6 ECTS/LF
Version 2.0.0 (since WS20/21) Person responsible for module: Prof. I	DrIng. Dietmar Koch	
Contents: <ul> <li>Introduction in bionics and bioin</li> <li>Basics of bionic principles</li> <li>Fundamental approaches to dee</li> <li>Topology optimization</li> <li>Bioinspired ceramic and polyme</li> <li>Natural fiber based bioinspired nater</li> </ul>	velop technical components based on er based components materials	bioinspired ideas
<ul> <li>The students know the bionicall</li> <li>The students have the compete</li> <li>The students understand gener.</li> <li>The students get the knowledge composites</li> <li>The students acquire scientific s</li> </ul> <b>Norkload:</b> Total: 180 h 120 h studying of course content using	nciples of bionics and bioinspiration y motivated development of technical of nce to explain topology optimization al principles bioinspired composites about manufacturing, properties and a skills to search for scientific literature a	application of natural fiber based
60 h lecture and exercise course (atte Conditions: basic knowledge of material science		Credit Requirements: Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Bioinspired Con Mode of Instruction: lecture Lecturers: Prof. DrIng. Dietmar Koc Language: English / German		

Frequency: each summer semester

Contact Hours: 3

# Contents:

see description of module

# Literature:

- B. Arnold, Werkstofftechnik für Wirtschaftsingenieure. 1. Auflage, Springer Verlag (2013)
- W. Bobeth (Ed.), Textile Faserstoffe Beschaffenheit und Eigenschaft, Springer-Verlag (1993)
- W. Nachtigal, K. G. Blüchel, Das große Buch der Bionik Neue Technologien nach dem Vorbild der Natur.
  2. Auflage, Deutsche Verlags-Anstalt (2001)
- C. Hamm (Ed.), Evolution of Light Weight Structures Analyses and Technical Applications, Springer-Verlag (2015)
- J. Müssig (Ed.), C. V. Stevens (Series Ed.), Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, Wiley Series in Renewable Resources (2010)

# Examination

## **Bioinspired Composites**

written exam, written exam / length of examination: 60 minutes

## Parts of the Module

# Part of the Module: Übung Bioinspired Composites

Mode of Instruction: exercise course

Language: German

Frequency: each summer semester

Contact Hours: 1

## Learning Outcome:

see description of module

#### Contents:

see description of module

#### Literature:

see description of module

Module MRM-0112: Finite elemen	t modeling of multiphysics	6 ECTS/LP
phenomena Finite-Elemente-Modellierung von Multiphysik-Phänomenen		
Version 2.9.0 (since WS19/20)		
Person responsible for module: Prof. D	r. Markus Sause	
Dozenten: Prof. Dr. Sause / Prof. Dr Pe		
Learning Outcomes / Competences: The students		
Learn the use and application of	ethods for modeling and simulation of pl numerical methods for realistic problems I principles of a FEM program by using "	8
Remarks:		
	MRM and Mathematics. It is intended for m FEM program as it is used in academ	
<b>Workload:</b> Total: 180 h		
Conditions:		Credit Requirements:
Recommended: MTH-6110 - Numerisc	he Verfahren für	Bestehen der Modulprüfung
Materialwissenschaftler, Physiker und	Wirtschaftsingenieure	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Finite-Elemente-	Modellierung von Multiphysik-Phänor	nenen
Mode of Instruction: lecture		
Lecturers: Prof. Dr. Malte Peter, Prof.	Dr. Markus Sause	
Language: German Contact Hours: 2		
Contents: The following content will be preser	nted.	
Modeling and simulation of pl		
Basic concepts of FEM progra		
Generation of meshes		
<ul> <li>Optimization strategies</li> </ul>		
<ul> <li>Selection of solver lgorithms</li> </ul>		
Example applications from electrodynamics		
Example applications from thermodynamics		
Example applications from continuum mechanics		
Example applications from fluid dynamics		
Coupling of differential equati	ons for the solution of multiphysics phen	omena
Lehr-/Lernmethoden:	_	
Slide presentation, classroom discu	ssion	

# Literature:

- Grossmann, C., Roos, H.-G., & Stynes, M. (2007). Numerical Treatment of Partial Differential Equations. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-71584-9
- Eck, C., Garcke, H., & Knabner, P. (2017). Mathematische Modellierung. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-662-54335-1
- Temam, R., & Miranville, A. (2005). Mathematical Modeling in Continuum Mechanics. Cambridge: Cambridge University Press.

#### Examination

# Finite-Elemente-Modellierung von Multiphysik-Phänomenen

written/oral exam / length of examination: 60 minutes

## Parts of the Module

Part of the Module: Übung zu Finite-Elemente-Modellierung von Multiphysik-Phänomenen

Mode of Instruction: exercise course

Language: German

Contact Hours: 2

## Lehr-/Lernmethoden:

Independent reflection of topics to deepen the lecture content

Module MRM-0136: Mechanical C Mechanical Characterization of Materia		6 ECTS/
Version 1.1.0 (since SoSe21)		
Person responsible for module: Prof. D	0r. Markus Sause	
Contents:	,	
The following topics are presented:		
<ul> <li>Introduction to material character</li> <li>Linear material behaviour</li> <li>Non-linear material behaviour</li> <li>Material failure</li> <li>Measurement technologies</li> <li>Tensile testing</li> <li>Compression testing</li> <li>Shear testing</li> <li>Other static testing concepts</li> <li>Fracture mechanics</li> <li>Assembly testing</li> <li>Surface mechanics</li> <li>Creep testing</li> <li>Fatigue testing</li> <li>High-Velocity testing</li> <li>Component testing</li> </ul>	rization	
Are introduced to important conc	materials testing and evaluation of materials in measurement techniques, and	
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using p 20 h studying of course content using l 60 h lecture and exercise course (atter	h exercises / case studies (self-study) provided materials (self-study) iterarture (self-study)	-
Conditions: None		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	
	regulations of the study program	

# Mode of Instruction: lecture

Language: English

Contact Hours: 3

## Literature:

- Issler, L., & Häfele, H. R. P. (2003). Festigkeitslehre Grundlagen. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-540-73485-7
- Dowling, N. E. (2019). Mechanical Behavior of Materials (4th ed.). Pearson.
- Gross, D., & Seelig, T. (2011). Fracture Mechanics. Springer Berlin Heidelberg. https:// doi.org/10.1007/978-3-642-19240-1
- J. Schijve. (2008). Fatigue of Structures and Materials (2nd Edition). Springer Science & Business Media.
- Sadd, M. H. (2018). Continuum Mechanics Modeling of Material Behavior. In Continuum Mechanics Modeling of Material Behavior. Elsevier. https://doi.org/10.1016/C2016-0-01495-X

# Examination

#### Mechanical Characterization of Materials

written exam, written exam / length of examination: 90 minutes

#### Parts of the Module

Part of the Module: Mechanical Characterization of Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Module PHM-0264: Functional and Smart Macromolecular Materials	6 ECTS/LP
Version 1.2.0 (since WS21/22) Person responsible for module: PD Dr. Klaus Ruhland	
Contents:	
Electro-active polymeric materials	
<ul> <li>Intrinsically electric conducting polymers (ICPs)</li> <li>Working principles of ICPs in selected applications</li> <li>Red/Ox-responsive ICPs</li> <li>Electrochromism</li> <li>Electroactive Actuators</li> <li>Non-electric-conducting electrically functional polymers</li> <li>Ferroelectric polymers</li> <li>Piezoelectric polymers</li> <li>Dielectric elastomers</li> </ul>	
Thermo-active polymeric materials	
<ul> <li>Difference between invertibility and reversibility</li> <li>Pyro-electric effect vs electro-caloric effect</li> <li>High-temperature-stabile polymers</li> <li>Thermochromic polymers</li> </ul>	
Mechano-active polymeric materials	
<ul><li>Shape-Memory-polymers</li><li>Self-healing polymers</li></ul>	
Photo-active polymeric materials	
<ul><li>Important chromophors and switching mechanisms</li><li>Photo-responsive polymerization initiators and catalysts</li></ul>	
Smart polymer gels	
<ul> <li>Thermo-responsive polymer gels (LCST/UCST)</li> <li>Electrically charged polymer gels</li> <li>pH-responsive polymer gels</li> </ul>	
Learning Outcomes / Competences: The Students get to know which functional properties can be implemented i which external stimulus.	into macromolecular marterials by action o
They reach the ability to differentiate between different mechanisms to intro materials and to decide about dependences between different external stim	
They will be competent to design smart functional multi-resonsive macromo application needs time- and space-dependent.	plecular materials that serve specific
Examples for applications of this type of material design will be discussed.	
Workload: Total: 180 h 80 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 60 h lecture (attendance) 20 h exercise course (attendance)	
Conditions:	Credit Requirements:
none	passing the final examination

Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Functional and Smart Macromolecular Materials

Mode of Instruction: lecture

# Language: German

Contact Hours: 4

## Contents:

see description of the module

#### Lehr-/Lernmethoden:

see description of the module

#### Literature:

- Smart Polymers and their Applications; M. R. Aguilar, J. S. Roman (ISBN 978-0-85709-695-1)
- Functional Monomers and Polymers; K. Takemoto, R. M. Ottenbrite, M. Kamachi (ISBN 0-8247-9991-7)
- Biomedical Applications of Electroactive Polymer Actuators; F. Carpi, E. Smela (ISBN 978-0-470-77305-5)
- Electroactive Polymer Actuators as Artificial Muscles; Y. Bar-Cohen (ISBN0-8194-5297-1)
- Smart Polymers; I. Galaev, B. Mattiasson (ISBN 978-0-8493-9161-3)
- Semiconducting and Metallic Polymers; A. J. Heeger, N. S. Sariciftci, E. B. Namdas (ISBN 978-0-19-852864-7)
- Polymers and Light; W. Schnabel (ISBN978-3-527-31866-7)
- Shape Memory Polymers; J. Hu (ISBN 978-1-90903-050-3)
- Shape Memory Maerials; D. I. Arun, P. Chakravarthy, K. R. Arockia, B.
- Santhosh (ISBN 978-0-367-57169-6)
- Polymer Materials with Smart Properties; M. Bercea (ISBN 978-1-62808-876-2)
- Self-healing Materials; K. Ghosh (ISBN 978-3-527-31829-2)
- Self-Healing Polymers; W. H. Binder (ISBN 978-3-527-33439-1)
- High Performance Polymers; J. K. Fink (ISBN 978-0-8155-1580-7)
- Functional Coatings; S. K. Ghosh (ISBN 978-3-527-31296-2)
- Handbook of Stimuli-Responsive Materials; M. W. Urban (ISBN 978-3-527-32700-3)
- Renewable Resources for Functional Polymers and Biomaterials; P. A. Williams (ISBN 978-1-84973-245-1)
- Thermochromic and Thermotropic Materials; A. Seeboth, D. Lötzsch (ISBN 978-981-4411-02-8)
- Thermochromic Phenomena in Polymers; A. Seeboth, D. Lötzsch (ISBN 978-1-84735-112-8)
- Shape-Memory Polymers for Aerospace Applications; G. P. Tandon, A. J. W. McClung, J. W. Baur (ISBN 978-1-60595-118-8)
- Polymer Mechanochemistry; R. Boulatov (ISBN 978-3-319-22824-2

### **Assigned Courses:**

Functional and Smart Macromolecular Materials (lecture)

# Examination

Functional and Smart Macromolecular Materials

written exam / length of examination: 90 minutes

Module PHM-0169: Masterthesis Masterthesis		26 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Dirk Volkmer	,
Contents:		
According to chosen topic		
Remarks:		
	SoSe 2020 as soon as the current situa	ation allows.
COMPULSORY MODULE		
Workload:		
Total: 780 h		
260 h studying of course content usin 520 h lecture and exercise course (at		
Conditions:		Credit Requirements:
To begin with the Masterthesis stude	nts must have acquired 72 CP from	written thesis
modules consisting of the modulgroup	-	
Recommended: according to the resp	pective advisor	
Frequency: each semester Siehe	Recommended Semester:	Minimal Duration of the Module:
Bemerkungen	from 4.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
1	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Masterthesis		
Language: English		
Learning Outcome:		
see description of module		
Contents:		
see description of module		
Examination		
Masterthesis		
Master's thesis		

Examination Prerequisites:

Masterthesis

Module PHM-0170: Colloquiun Colloquium	n	4 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Pro	f. Dr. Dirk Volkmer	
Contents: According to the respective Mastert	hesis	
Remarks: The Colloquium will be offered in So COMPULSORY MODULE	oSe 2020 as soon as the current situation	n allows.
<b>Workload:</b> Total: 120 h 40 h studying of course content usin 80 h lecture and exercise course (a		
Conditions: submission of the masterthesis		
Frequency: each semester Siehe Bemerkungen	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Colloquium Language: English		
Learning Outcome: see description of module		
Contents: see description of module		
Examination Colloquium seminar / length of examination: Examination Prerequisites:	20 minutes	

Colloquium

Module PHM-0208: Functional Materials (International) – second year (Institut National Polytechnique de Grenoble) Functional Materials (International) – second year (Institut National Polytechnique de Grenoble)		58 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Pro	of. Dr. Ferdinand Haider	
Conditions: studies at an international partner institution		Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Functional Materials (International) – (Foreign Institution) Language: English

#### Examination

# Functional Materials (International) – (Foreign Institution)

Module PHM-0211: Functional Materials (International) – second year (Université Bordeaux I) Functional Materials (International) – second year (Université Bordeaux I)		58 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: Pr	of. Dr. Ferdinand Haider	
Conditions: studies at an international partner institution		Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Functional M Language: English	/laterials (International) – (Foreign Institu	tion)

# Examination

# Functional Materials (International) – (Foreign Institution)

Module PHM-0212: Functional Materials (International) – second year (Université Catholique de Louvain) Functional Materials (International) – second year (Université Catholique de Louvain)		58 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: Pro	f. Dr. Ferdinand Haider	
Conditions: studies at an international partner i	nstitution	Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Functional Materials (International) – (Foreign Institution) Language: English

#### Examination

# Functional Materials (International) – (Foreign Institution)

Module PHM-0213: Functional Materials (International) – second year (Université de Liège) Functional Materials (International) – second year (Université de Liège)		58 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: P	rof. Dr. Ferdinand Haider	
Conditions: studies at an international partner	institution	Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		<u> </u>
Part of the Module: Functional	Materials (International) – (Foreign Institu	tion)

Language: English

# Examination

# Functional Materials (International) – (Foreign Institution)

Module PHM-0214: Functional Materials (International) – second year (Universidade de Aveiro) Functional Materials (International) – second year (Universidade de Aveiro)		58 ECTS/LP
Version 1.0.0 (since WS15/16) Person responsible for module: Pre	of. Dr. Ferdinand Haider	•
Conditions: studies at an international partner institution		Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Functional N Language: English	laterials (International) – (Foreign Institut	tion)

# Examination

# Functional Materials (International) – (Foreign Institution)

Module PHM-0209: Functional Materials (International) – first year (Institut National Polytechnique de Grenoble) Functional Materials (International) – first year (Institut National Polytechnique de Grenoble)		62 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Pro	f. Dr. Ferdinand Haider	
Conditions: studies at an international partner institution		Credit Requirements: written exam, oral exam, report, etc.
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module: semester[s]
	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Functional Materials (International) – (Foreign Institution) Language: English

#### Examination

# Functional Materials (International) – (Foreign Institution)